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We consider the problem of optimally designing an excitation input for parameter identification of an electrochemical Li-ion battery
model. The conventional approach to performing parameter identification uses standard test cycles. In contrast, we optimally design
the input trajectory to maximize parameter identifiability in the sense of Fisher information. Specifically, we derive sensitivity
equations for the electrochemical model. This approach enables parameter sensitivity analysis and optimal parameter fitting via
gradient-based algorithms. This paper presents a general systematic approach to identify the electrochemical parameters in a non-
invasive way. First, we group parameters into two sets: (i) equilibrium parameters, and (ii) dynamical parameters. We also divide the
dynamical parameters into subsets by calculating orthogonalized sensitivity, which mitigates linear dependence between parameters.
A large number of input profiles have been devised to constitute an input library. Then, the optimal inputs are selected from the
input library to maximize the Fisher information, via convex programming. Using this framework a number of relevant experiments
are obtained to parameterize. To validate our approach experimentally, we consider a 18650 Lithium nickel cobalt aluminum oxide
battery. Compared to the conventional approach, our proposal achieves lower voltage RMSE across all experimental testing cycles.
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Batteries are a key enabling technology behind electrified trans-
portation, portable consumer electronics, and more. To enhance the
safety and performance of these devices, one must understand their
electrochemical behavior. To this end, battery systems researchers
are deeply interested in mathematical electrochemical models. An
experimentally validated model can be used for design, simulation
and analysis, or online battery management systems (BMS).1,2 Iden-
tifying the unknown model parameters, however, is challenging for
multiple reasons. First, battery cell manufacturers do not disclose this
information on data sheets for users. Second, one can only measure
voltage, current, and temperature - at best. Third, characterizing cer-
tain properties, e.g. diffusivities, requires destructive testing. Finally,
the measured signals are generally nonlinear with respect to the model
parameters, and the dynamics are governed by coupled nonlinear par-
tial differential-algebraic equations.

Accurate electrochemical battery models are critical for a variety
of tasks, such as designing high-performance battery management
systems, battery pack design, and analysis. However, identifying pa-
rameters in electrochemical battery models from measured voltage,
current, and temperature data is notoriously difficult. Recently, non-
invasive parameter identification of electrochemical models has be-
come an emergent research topic. Schmidt et al.3 conducted combined
parameter analysis and identification by using a Fisher information
matrix approach in combination with sensitivity analysis. They use a
reduced electrochemical model – a single particle model with elec-
trolyte potential. Recently, Bizeray et al.4 analyze parameter sensi-
tivity in a single particle model and show it is fully parameterized
with six subgroups, under certain mild conditions on the electrode
potentials. In contrast, Forman et al.5 use an “all-in-one” approach
to identifying 88 parameters from driving cycle data using a genetic
algorithm and the Doyle-Fuller-Newman model. They validate the
identified parameter values with experiments and perform Fisher in-
formation analysis ex post facto. Similarly, authors in Zhang et al.6

use a multi-objective genetic algorithm called NSGA-II for a LiFePo4

cell. They use terminal voltage and surface temperature as identifi-
cation objectives. In other work by Zhang et al.,7 they propose the
“Best Practicable Conditions” for each parameter based on sensi-
tivity analysis and clustering analysis. They derived the best iden-
tification strategy for each parameter under this condition. The au-
thors also conduct an experimental design which attempts to identify
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highly sensitive parameters to poorly sensitive parameters. Recently,
both Jobman et al.8 and Jin et al.9 propose a two-step procedure
that sequences parameter identification. The thermodynamic parame-
ters are identified first, and then the kinetic parameters are identified
second via pulses and/or electrochemical impedance spectroscopy
(EIS).

Rather than identify all the parameters, some researchers focus
on identifying specific subsets of parameters, such as battery health-
related or kinetic parameters. For example, the physical parameters,
such as diffusion coefficients and activation energies are targeted in 6.
In Marcicki et al.,10 the authors focus on the electrochemical param-
eters related to power and capacity fade, as well as their temperature
dependence under a variety of charge sustaining and depleting exper-
iments. In Vazquez-Arenas et al.,11 the researchers analyze sensitivity
of certain key parameters using Analysis of Variations (ANOVA),
and identify the kinetic and transport parameters with standard test
cycles.

Most existing literature on battery parameter identification focuses
on parameter fitting, namely, matching model output to experimental
data. However, it is unclear if the experimental data is “sufficiently
rich” to identify the parameters. A small set of publications in the bat-
tery parameter identification literature directly address this problem by
formulating an input trajectory optimization problem.12,13 This work
optimizes the amplitude and frequency of a sinusoidal input signal
to maximize the Fisher information matrix, for an equivalent circuit
model and single particle model, respectively. One could exploit a
series of inputs that excite specific parameter sensitivity, however,
collecting the required data from experiments can be cost and time
intensive. This motivates the following question: Which inputs should
be applied to maximize parameter identifiability in a systematic way?
In addition, the estimated parameters should be characterized by con-
fidence intervals. These questions motivate optimal experimental de-
sign (OED), which provides an important link between experimental
design and modeling.14 In this paper, we propose an electrochem-
ical model-based optimal experiment design framework that yields
parameter estimates with statistical information. Instead of formulat-
ing a nonlinear trajectory optimization problem, we propose a convex
input selection problem.

The paper is organized as follows. First, we briefly presents the
DFN electrochemical Li-ion battery model. We generalize this battery
model and describe the mathematical background for experimental de-
sign. Next section details the proposed optimal experimental design
for parameter identification. After that, we present the experimental
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Figure 1. The schematic of first principles electrochemical model known as
Doyle-Fuller-Newman (DFN) model.

identification process and a comparison with a conventional approach.
In Conclusions section, we summarize our work and provide perspec-
tives on future work.

Electrochemical Battery Model

Doyle-Fuller-Newman (DFN) model.—We consider the Doyle-
Fuller-Newman (DFN) model to predict the evolution of lithium con-
centration in the solid c±

s (x, r, t), lithium concentration in the elec-
trolyte ce(x, t), solid electric potential φ±

s (x, t), electrolyte electric
potential φe(x, t), ionic current i±

e (x, t), molar ion fluxes j±
n (x, t),

battery core temperature T1(t), and surface temperature T2(t).15,16 The
schematic of DFN model is shown in Figure 1. The model describes
the transport of Li-ions govened by diffusion in solid and liquid phase
as well as charge conservation in both eletrode. The govening equa-
tions are summarized in Appendix A.

Parameter of interest.—The electrochemistry-based battery
model combined with two-state thermal dynamics summarized in
Appendix B is capable of high-fidelity simulations. However, it has a
large number of parameters that must be identified for experimental
data. Next, we distinguish fixed parameters from those we seek to
identify from data. We classify parameters into two categories: fixed
geometric/thermal parameters in Table I and electrochemical param-
eters listed in Table II.

For the fixed parameter category, we directly measure the geo-
metric parameters and adopt the thermal parameters for a cylindrical
18650 cell from the literature.6 We then divide the electrochemi-
cal parameters in Table II into two groups: equilibrium parameters
and dynamical parameters. By “dynamical parameters”, we mean pa-
rameters associated with the dynamics. There are 21 to-be-identified
parameters in total. The equilibrium parameters are closely related to
the cell charge capacity. The dynamical parameters characterize the
internal dynamics of the battery, e.g. diffusion, ion transport, ohmic
overpotential and electrochemical reactions. Due to the wide range of
dynamical parameter values, we apply normalization. Parameter θi is
normalized to θ̄i according to:

Logarithmic scale : θ̄i = log θi − log θi,min

log θi,max − log θi,min
,

Linear scale : θ̄i = θi − θi,min

θi,max − θi,min
, [1]

where each parameter’s upper and lower bound is determined from
the existing literature values, and possibly any a priori knowledge of
the physically meaningful parameter values.

System Generalization

Next, we abstract the electrochemical battery model into a general
dynamical system format to formulate our optimal experimental de-
sign approach. The dynamical system notation is shown in Table III.
In particular, the DFN model is represented by differential algebraic
equations (DAEs) after discretizing A1–A21 in space via a suitable
method, e.g. finite differences, Padé approximation, spectral methods
(see e.g.17–20):

ẋ = f (x, z, u, θ), x(t0) = x0, [2]

0 = g(x, z, u, θ), z(t0) = z0, [3]

y = h(x, z, u, θ). [4]

Denote x = [c−
s , c+

s , ce, T1, T2]T ∈ R
nx as the state vector, z =

[φ−
s , φ+

s , i−
e , i+

e , φe, j−
n , j+

p ]T ∈ R
nz as the algebraic variable vector,

y = V (t) as the output variable defined in A21. Importantly, θ =
[D−

s , D+
s , . . . , c0

e ] ∈ R
n p is the vector of dynamical parameters in

Table II which we seek to identify.
Sensitivity analysis is used to understand how a model’s output

depends on variations in the parameter values.21 Based on nomi-
nal parameter values, local sensitivity analysis measures the effects
of small changes in the parameters have on the output. For contin-
uous dynamical systems, the local sensitivities are defined as the
first-order partial derivatives of the system output with respect to
the parameters. We briefly introduce how to derive local sensitivities
in dynamical systems described by 2–4. Subsequently, we develop

Table I. Fixed geometric/thermal parameters.

Geometric parameters

Symbol Description [SI units]
L− Thickness of negative electrode [m]

Lsep Thickness of separator [m]
L+ Thickness of positive electrode [m]
A Electrode current collector area [m2]

Thermal parameters
Symbol Description [SI units]

C1 Heat capacity of battery core [J (m2 K)−1]
C2 Heat capacity of battery surface [J (m2 K)−1]
h12 Heat transfer coefficients from core to surface [W (m2 K)−1]
h2a Heat transfer coefficients from surface to ambient [W (m2 K)−1]

E{D±
s ,De ,κ,k±} Activation energy for Arrhenius temperature dependence [kJ mol−1]
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Table II. Parameters of interest for identification.

Equilibrium parameters

Symbol Description [SI units] Normalization scheme
ε−

s Solid-phase volume fraction [-] -
ε+

s Solid-phase volume fraction [-] -
nLi,s Moles of cyclable lithium in solid phase [mol] -

Dynamical parameters
Symbol Description [SI units] Normalization scheme

D−
s Solid-phase diffusion coefficients of the anode [m2 s−1] Logarithmic

D+
s Cathode solid-phase diffusion coefficients of the cathode [m2 s−1] Logarithmic

R−
s Solid-phase particle radii of the anode [m] Linear

R+
s Solid-phase particle radii of the cathode [m] Linear

σ− Solid-phase conductivity of the anode [S m−1] Logarithmic
σ+ Solid-phase conductivity of the cathode [S m−1] Logarithmic

De(·) Electrolyte diffusion coefficient [m2 s−1] Linear
ε−

e Electrolyte volume fraction [-] Linear
ε

sep
e Electrolyte volume fraction [-] Linear
ε+

e Electrolyte volume fraction [-] Linear
κ(·) Electrolyte conductivity [S m−1] Linear
t0
c Transference number [-] Linear

d ln fc/a
d ln ce

(·) Activity coefficient [-] Linear
k− Kinetic rate constants [(A m−2)(m3 mol−1)(1+α)] Logarithmic
k+ Kinetic rate constants [(A m−2)(m3 mol−1)(1+α)] Logarithmic
R−

f Film resistance [� m2] Linear
R+

f Film resistance [� m2] Linear
ce(x, 0) Initial Li-ion concentration in electrolyte [mol m−3] Linear

this approach toward a parameter estimation framework via Fisher
information.

Define sensitivity variables as follows:

Sx = ∂x

∂ θ̄
, Sz = ∂z

∂ θ̄
, Sy = ∂y

∂ θ̄
, [5]

where Sx ∈ R
nx ×n p , Sz ∈ R

nz×n p , Sy ∈ R
ny×n p are sensitivity matri-

ces. The i, j matrix element is defined as the partial derivative of the
i-th variable to the j-th normalized parameter, e.g.

[Sx]i, j (t) = ∂xi (t)

∂ θ̄ j
. [6]

The evolution of the sensitivity variables is governed by the sensi-
tivity differential algebraic equations (SDAEs), which can be derived
following the procedure in 22:

d

dt
Sx = ∂ f

∂x
Sx + ∂ f

∂z
Sz + ∂ f

∂θ
, Sx(0) = Sx0, [7]

0 = ∂ g
∂x

Sx + ∂ g
∂z

Sz + ∂ g
∂θ

, Sz(0) = Sz0, [8]

Sy = ∂h
∂x

Sx + ∂h
∂z

Sz + ∂h
∂θ

. [9]

The advantage of SDAEs is that they provide a rigorous mathe-
matical computation of the sensitivities compared to a perturbation
method where sensitivities are obtained by perturbing each parameter

Table III. DAE notation for the electrochemical model.

DAE Variables DFN Variables

x c−
s , c+

s , ce, T1, T2
z φ−

s , φ+
s , i−

e , i+
e , φe, j−

n , j+
p

u I
θ dynamical parameters in Table II

slightly and calculating the output difference with respect to nominal
parameters. Note that SDAEs are linear time-varying DAEs, where
the Jacobians are computed at each time step. The Jacobians can be
derived analytically by-hand, or calculated numerically via finite dif-
ferences. In this work, we utilize automatic differentiation since it
provides accurate, automated, and fast Jacobian calculations. In par-
ticular, we use CasADi,23 which efficiently computes the first and
second-order derivatives. In this work, the battery model DAEs and
the corresponding SDAEs are simulated by using the IDAS integrator
provided by SUNDIALS via the CasADi interface.24 Besides conve-
nience for simulation, the automatic calculation of Jacobians provides
advantages for optimal experiment design and parameter estimation,
as described in the following sections.

Optimal Experimental Design

In this section, we propose a systematic framework for Li-
ion battery parameter identification. The following three-step iden-
tification process takes account of experimental design blocks in
Figure 2.

Step 1: Equilibrium parameter identification

� Run OCV experiment
� Non-linear Least-Squares

Step 2: Sensitivity analysis for dynamical parameters

� Design Input Library
� Sensitivity Analysis
� Grouping Parameters

Step 3: Experimental design for dynamical parameter identification

� Experimental Measurement Error Quantification
� OED-CVX programming
� Design Optimal Input
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Figure 2. The proposed model-based design of experiments framework for parameter identification of the DFN model.

� Experimental Design
� Parameter Estimation

As a first step, one should select a mathematical model to represent
the system under study. The mathematical model considered here is
the DFN model. The DFN model mathematically takes the form of
DAEs. Once the battery model is selected, then nominal parameter
values must be determined. It is important to note that finding nominal
parameter values near the true values is beneficial, since the optimal
parameter fitting algorithms are based on gradient-descent approach
and therefore converge to local minima. We searched relevant papers
to choose credible nominal values.

After setting nominal parameter values, we separate the parameters
into two groups: equilibrium parameters and dynamical parameters.
For equilibrium parameter identification, we adopt the method in 25.
Note that it is possible to derive sensitivity values for equilibrium
parameters, however, these values turned out to be dependant on the
initial states, resulting in non-zero values for zero currents. For this
reason, we solve the non-linear least square problem using data gen-
erated from an open circuit voltage (OCV) experiment, which applies
very low rate charge/discharge cycles to characterize the equilibrium
state. To estimate the dynamical parameters, we generate an input
library of possible input trajectories. The sensitivities for each input
trajectory are calculated in the library. Then we partition the dynam-
ical parameters into groups, based on their sensitivity magnitudes.
High sensitivity parameter groups should be identified first, followed
by less sensitive parameters groups.

After grouping the parameters, we run optimal experimental de-
sign via convex programming to select optimal inputs for parame-
ter estimation. We use the open-source cvx solver to select optimal
inputs. Then, corresponding experiments are executed to collect ex-
perimental measurements. For the experimental setup, we utilize a
PEC Corp. SBT2050 series tester and Espec environmental chamber.

Once experimental measurements are acquired, the parameter estima-
tion algorithm is applied to fit the simulation result to experimental
measurements. In this work, we utilize the Levenberg-Marquardt al-
gorithm for parameter updates at each iteration. We repeat this process
until each parameter group is complete. Once we finalize the identi-
fied parameters, we compare the identified model output predictions
versus a testing data set. For comparison, we benchmark our proposed
approach against simple discharge and charge current profiles, which
we refer to as a “conventional approach”. The following subsections
contain detailed analysis for each step of the proposed model-based
design of experiments.

Equilibrium parameter identification.—We formulate a proce-
dure to identify parameters in the equilibrium structure of electro-
chemical models. In words, these parameters correspond to cyclable
lithium in the solid phase nLi,s [mol], electrode capacity Q± [Ah],
and the stoichiometric points θ± [-]. Note, in this subsection we over-
load the symbol θ to represent stochiometric points to remain con-
sistent with the literature. To identify these parameters, we require
experimentally obtained open circuit voltage (OCV) data and known
open circuit potential functions for each electrode U±(·). Open circuit
potentials for each electrode are carefully measured from half cells
constructed from the commercial cell. Knowledge of the individual
open circuit potentials, U±(·) is required for equilibrium parameter
identification, a finding that is consistent with existing literature .4,8,9

We adopt the procedure from a patent by one of the co-authors.25

Consider the equilibrium structure of the electrochemical model
described in 15. The relationship between cyclable lithium nLi,s and
normalized electrode concentrations θ± is given by:

nLi,s = ε−
s L− A c−

s,max · θ−(k) + ε+
s L+ A c+

s,max · θ+(k), ∀ k,

[10]
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Figure 3. OCV comparison between identified model and experimental data
for three averaged C/50 charge/discharge cycles.

where k indexes stochiometric points parameterized by time or Ah-
processed. For convenience, let us define the lumped parameters H±

as

H± = ε±
s L± A · c±

s,max. [11]

Dimensional analysis reveals that H± have dimensions of [mol].
Consequently, we define H± to be the molar capacity of the electrodes.
The charge capacity of the electrodes is therefore given by:

Q± = F · H±, [12]

where F is Faraday’s constant. Then, let us define a recursive rela-
tionship that relates the steady-state normalized anode concentrations
before and after injecting current I for �t time units.

θ−(k + 1) = θ−(k) − �t

F H− · I, ∀ k. [13]

The equilibrium voltage, i.e. OCV, is given by:

V (k) = U+(θ+(k)) − U−(θ−(k)), ∀ k. [14]

Solving 10 for θ+(k) and substituting into 14 gives:

V (k) = U+
(

nLi,s − H−θ−(k)

H+

)
− U−(θ−(k)), ∀ k. [15]

To summarize, we have unknowns x = [
θ−(0), H+, H−, nLi,s

]T

and Equations 13, 15. Then, we formulate the following nonlinear
optimization problem to find the unknown variables x given exper-
imentally obtained cell OCV data Vocv(k) and known open circuit
potential functions U±(θ±):

minimize
x

N∑
k=0

[V (k) − Vocv(k)]2 , [16]

subject to : V (k)=U+
(

nLi,s−H−θ−(k)

H+

)
−U−(θ−(k)), ∀ k,

[17]

V max = U+
(

nLi,s − H−θ−(0)

H+

)
− U−(θ−(0)), [18]

θ−(k + 1) = θ−(k) − �t

F H− · I, ∀ k = 0, 1, · · · , N − 1,

[19]

where N is the total number of experimental data points, and V max

corresponds to the maximum OCV and the first index k = 0. Note
the last constraint is initialized with optimization variable θ−(0). This

Table IV. Identified equilibrium parameters.

Parameter Estimated values

ε−
s 5.438895e-01

ε+
s 6.663649e-01

nLi,s 0.1406 moles

optimization program is nonlinear and non convex in the optimization
variables, requiring a nonlinear optimization solver, such as fmincon
in Matlab.

Suppose that θ±(0)� and θ±(N )� correspond to the optimized nor-
malized concentrations at the maximum and minimum voltage limits,
respectively, according to the cell’s datasheet. Then the stochiometric
points are given by:

θ±,� = θ±(0)�, θ
±,� = θ±(N )�. [20]

Suppose that H±,� correspond to the optimized molar capacities
of each electrode. Then the charge capacity of each electrode Q±,�

and the cell Q� can be calculated as:

Q±,� = F · N±,�, Q� = min
{

Q+,�, Q−,�, F · n�
Li,s

}
. [21]

By solving the optimization problem 16–19 using OCV data from
three averaged C/50 charge/discharge cycles, we obtain the following
equilibrium parameters as shown in Table IV.

Figure 3 compares the identified equilibrium model against exper-
imental data. We achieve an overall root mean square error (RMSE) of
less than 5 mV in 98% of the operating range. If one uses faster OCV
tests, e.g. C/25, C/10, or C/5, then the resulting model identification
accuracy will degrade. Based on the identified structure, we define the
cell state-of-charge (SOC) in association with the equilibrium voltage
as listed in Table V, which is used for simulation and experiment
design in subsequent sections.

Sensitivity analysis for dynamical parameters.—Next we iden-
tify the dynamic parameters in Table II. A fundamental challenge is
linear dependence between the parameter sensitivities, resulting in
non-uniqueness between estimated parameter values. For this reason,
we adopt a parameter grouping-based approach.3 In our approach,
each parameter’s sensitivity is analyzed across a large number of in-
put profiles.

In order to design the optimal set of experiments for identifying
battery parameters, a suite of candidate input profiles has been gener-
ated. The input library is heuristically designed to cover a wide range
of frequency content and current magnitudes. Broadly, these candidate
profiles can be categorized as 1) pulses, 2) sinusoids, and 3) driving
cycles. The profiles were generated by a custom Matlab script, which
iterated across several design parameters for each input profile cate-
gory. For example, pulses were generated by various combinations of
pulse width, duty ratio, total time, charge/discharge, and initial volt-
age. Sinusoidal profiles were generated for various combinations of
frequency, total profile time, initial voltage, and charge/discharge. The
range of input profile characteristics, e.g. frequency, was determined
with consideration for hardware limitations of our battery tester, com-
putational limits/time, and aliasing phenomenon. In all cases, the input
magnitudes were normalized such that their L1 norm is 1 Ah, thereby
enabling a fair comparison between inputs. A total of 738 profiles
exists across these three input categories. Setting constraints that de-

Table V. Cell SOC to voltage mapping.

SOC Voltage mapping [V]

80% 3.9481
60% 3.7689
40% 3.5982
20% 3.4562
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Table VI. Pulse profile specification.

Input variable Setting

Amplitude 0.5C to 5C, in 0.5C increments
Pulse width 1 sec to 1000 sec
Duty cycle n ∗ (pulse width), n ∈ {1, 2, 3}
Total time 600 sec (10 min) to 3600 sec (1 hr)
Initial voltage V0 = {3.9481 3.7689 3.5982 3.4562}
Current charge only, discharge only, or both

fine the feasible set of input profiles is the first step in evaluating the
candidate input profiles. Across all profile categories, the following
constraints must be upheld:

1. T2 ≤ 50oC
2. |I (t)| ≤ 5C
3. 600 sec ≤ t f ≤ 3600 sec

Additionally, all input profiles are generated from the following
initial SOC: SOC0 ∈ {0.8, 0.6, 0.4, 0.2}. The initial voltage V0 values
associated with initial SOC are determined according to the Table V.
On the other hand, input profiles need to keep the SOC within its
upper and lower limit. To check that these conditions hold, the abso-
lute �SOC for each profile is calculated and added to SOC0. The
immediate conclusions are that driving cycle profiles, all of which
are net discharging, cannot be applied when the battery SOC is 20%.
Similarly, discharging pulse and sinusoid profiles cannot be applied
when the battery SOC is 20%. Charging pulse and sinusoid profiles
cannot be applied for SOC ≥ 80%. Consequently, these inputs are
parsed out of the input library. The remainder of this section will de-
scribe the parameters of each profile category and its corresponding
normalization scheme.

Pulse profiles are generated with six input variables for a total of
540 pulse profiles as shown in Table VI. Note that the pulse width up-
per bound is set to be commensurate with the characteristic diffusion
time for a given battery chemistry. The current values are normal-
ized using an L1 norm, i.e. the integral of the current magnitude
over the total time of the profile: I (t)/

∫ |I (t)|dt . Therefore, the to-
tal normalized amount of charge processed in each pulse is equal to
1 Ah.

Sinusoid profiles are generated with four input variables for a
total of 180 sinusoid profiles, as detailed in Table VII. Note that
the frequency range was set in order to: (i) avoid exciting dynamics
occurring at un-modeled frequencies, and (ii) not violate the sampling
rate limit of a standard battery tester. The current values are also
normalized with the L1 norm, i.e. the integral of the current magnitude
over the total time of the profile: I (t)/

∫ |I (t)|dt . Therefore, the total
normalized amount of charge processed in each pulse is equal to 1
Ah. Charge only, discharge only, and charge-discharge profiles follow
the same structure as the pulse profiles.

The dynamic drive cycle profiles summarized in Table VIII are
evaluated at three different initial SOCs, for a total of 18 dynamic
drive cycle profiles. Note that US06 is the most aggressive cycle in
terms of peak current applied. The current values are normalized to
the L1 norm so that the total normalized amount of charge processed
in each pulse is equal to 1 Ah.

There are 540 pulse inputs, 180 sinusoidal inputs, and 18 driv-
ing cycle inputs, yielding a total of 738 inputs and 329.65 hours in

Table VII. Sinusoid profile specification.

Input variable Setting

Frequency {0.01, 0.05, 0.1} Hz
Total time 600 sec (10 min) to 3600 sec (1 hr)
Initial voltage V0 = {3.9481 3.7689 3.5982 3.4562}
Current charge only, discharge only, or both

Table VIII. Driving cycle profile specification.

Name Description

DC1 naturalistic morning driving test profile26

DC2 nautralistic evening driving test profile26

LA92 Unified driving schedule for emission inventory27

SC04 Speed correction driving schedule27

UDDS Urban dynamometer driving schedule27

US06 High acceleration aggressive driving schedule27

the input library. Note that short duration input profiles tend to have
large input magnitudes due to normalization while long duration in-
put profiles have relatively small input magnitudes. High performance
computing cluster is used to parallelize model simulation and sensi-
tivity calculations.

When input library in constructed, we introduce the parameter
grouping methodology for parameter identification. It is well known
(see e.g.5) that the entire electrochemical parameter vector θ is weakly
identifiable from the measured output, since the system is nonlinear
in the parameters. This is due to linear dependence between the pa-
rameter sensitivity vectors.3 When the linear dependence exists in pa-
rameter sensitivity vector space, an output produces nearly identical
reactions when two different parameters are perturbed. Therefore, it is
necessary to analyze the linear dependence between electrochemical
parameters, and rank/organize them into groups to avoid non-unique
solutions during the parameter identification process. Suitable linear
transformations of ST

y Sy can reveal properties such as norm and linear
dependence.28 Orthogonalization allows us to systematically rank the
most influential parameters on the model output.

For parameter grouping, we first perform sensitivity analysis across
the library of input profiles. After calculating the sensitivities 7–9
for 738 profiles through parallel computing, we apply the Gram-
Schmidt process on ST

y Sy to reveal the orthogonalized sensitivity
magnitudes and linear dependence.29 Figure 4 visualizes the average

01-2-3-4-5-6-7-8-9-01-11-21-31-41-51-
Sensitivity Magnitude [log scale]

Figure 4. The sorted average orthogonalized sensitivity magnitudes across all
inputs in the input library.
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Table IX. Dynamic parameter groups.

Group 1 Group 2 Group 3 Group 4

R−
s D−

s R−
f σ−

R+
s D+

s k− σ+
ε−

e ε+
e ε

sep
e

κ(·) ce0 k+
De(·) R+

f t0
c

d ln fc/a
d ln ce

(·)

sensitivity magnitudes via Graham-Schmidt orthogonalization over
738 profiles.

Based on this sensitivity analysis, we group the parameters based
on their orthogonalized sensitivity magnitudes. The resultant groups
are shown in Table IX. It is evident that some of the parameters
have strong identifiability, i.e. particle radii R±

s . Other parameters,
e.g. the transference number t0

c and solid phase conductivities σ±,
are weakly identifiable. To validate these conclusions, we apply a
parameter perturbation approach to a parameter from each of the
four groups. Figure 5a visually demonstrates that Group 1 parameter
R−

s has the largest impact on voltage, followed by representative
parameters in Group 2 (D−

s ), Group 3 (R−
f ), and Group 4 (σ−). For

fair comparison, we perturb each representative parameter according
to its normalized value, denoted by upper bars in Figure 5. Note, one
should not expect these conclusions to be generally true across all
cell chemistries, models, and manufacturers. These conclusions are
specific to the cell under study and normalization.

In the parameter identification framework, Group 1 is identified
first, while the other parameters are fixed to their nominal values.
Next, Group 2 parameters are identified while fixing the remaining
unidentified parameters, and so forth.

Experimental design for dynamical parameter identification.—
In statistical experiment design, the amount of “information” on pa-
rameter vector θ contained in the observation y from an experiment is
calculated by the Fisher information matrix, F.30 The Fisher informa-
tion matrix is mathematically defined as:

F =
∫ t f

0
ST

y (t)Q(t)−1 Sy(t) dt, [22]

where t ∈ [0, t f ], and Q(t) is the covariance matrix of the measure-
ment error. Since the true parameters θ∗ are unknown, the sensitivity
is calculated around nominal parameter values θ0. The deviation of
the parameter estimates from their true values can be expressed as
the covariance matrix �. According to the Cramer-Rao bound,31,32

the inverse of the Fisher information matrix provides a lower bound
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Figure 5. The comparison of model output impact by changing parameters. (a) Perturbation of Group 1 parameter R
−
s . (b) Perturbation of Group 2 parameter

D
−
s . (c) Perturbation of Group 3 parameter R

−
f . (d) Perturbation of Group 4 parameter σ−.
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on �,

F−1 ≤ �. [23]

Our goal is to find inputs that minimize the lower bound of the
parameter estimation error, thus improving the parameter estimation
quality. To optimize the amount of information, a proper scalarization
of F should be considered. Several scalarization criteria are commonly
used in the literature such as:

� D-optimality: log det(F−1).
� A-optimality: trace(F−1).
� E-optimality: λmax(F).

Each optimality criterion has a different geometrical interpretation.
For instance, D-optimal design minimizes the geometric mean of the
errors in the parameters, while E-optimal design minimizes the largest
eigenvalue of the confidence region of parameters. In this work, we
use D-optimal design as it is the most commonly used.14 However,
the other criteria are equally applicable in this framework.

We formulate a procedure to optimize experiment design to pro-
duce inputs that are maximally informative for parameter estimation.
A natural and mathematically elegant approach is to formulate an
optimal control problem. Namely, one may seek an input trajectory
that maximizes D-optimality subject to the system dynamics. This
concept has been applied in 12,13. However, solving a large-scale opti-
mal control problem with thousands of states and nonlinear dynamics
given by 2–4, 7–9 is computationally intractable. Two weeks of wall
clock time are needed to optimize a 100 second input trajectory for
the electrochemical model on a PC with an INTEL Core i5 - 1.8GHz
dual core, Turbo Boost up to 2.9GHz, with 3MB shared L3 cache,
and 8GB RAM. The previous literature12,13 side-steps this challenge
using control vector parameterization and simplified models, such as
an equilivalent circuit model or single particle model.

To bypass the challenge of solving a large-scale nonlinear optimal
control problem, we pursue a different approach. Specifically, we
seek the set of inputs from an input library which maximizes the
Fisher information matrix. This process yields a convex optimization
program, which can be rapidly solved with polynomial complexity
open-source solvers, such as cvx.33

We now detail the theory behind optimal experiment design via
convex optimization. Suppose we have a set of L experimental in-
puts ui (t), i = 1, 2, · · · , L . For each input profile ui (t), we obtain a
corresponding sensitivity vector Sy,i (t) by solving 2–4 and 7–9 simul-
taneously. Amongst these L inputs ui (t), i = 1, 2, . . . , l, we select
M inputs that are maximally informative as measured by the Fisher
information matrix F , where M < L . Let m j ∈ {0, 1} be a binary
value that indicates if experiment j is executed from the input library.
Then, the total number of experiments is given by

m1 + m2 + . . . + ml = M. [24]

We then rewrite the Fisher information matrix as:

F =
L∑

i=1

mi ST
y,i Q−1

i Sy,i . [25]

We now formulate a combinatorial optimization problem to max-
imize the D-optimality criterion of F :

minimize
mi

log det

(
L∑

i=1

mi ST
y,i Q−1

i Sy,i

)−1

, [26]

subject to mi ∈ {0, 1}, [27]

m1 + . . . + ml = M. [28]

This problem is a binary integer program, where the optimal num-
ber of experiments mi is the solution. In general, large-scale com-
binatorial problems are NP-hard. In this work, we relax the integer

constraint 27 into 0 ≤ mi ≤ 1, yielding a relaxed optimization prob-
lem that is convex. Let ηi = mi/M be the fraction of experiment type
i to execute. Then the Fisher information 25 can be re-written as

F = M
L∑

i=1

ηi ST
y,i Q−1

i Sy,i , [29]

where η ∈ R
L , 1T η = 1. Thus, our final convex optimal experiment

design problem is:

minimize
η

log det

(
L∑

i=1

ηi ST
y,i Q−1

i Sy,i

)−1

, [30]

subject to 0 ≤ ηi ≤ 1

M
, ∀ i 1T η = 1, [31]

where M can be dropped without affecting the minimizer. One can
show this is a convex problem with respect to η.34 Additionally, the
solutions will be integral; that is, the solution to relaxed optimization
problem 30–31 is also the solution to 26–27.

Remark: Suppose that associated with each experiment ui (t) is
a cost ci , which can represent time required, economic/labor cost, or
battery degradation. The total cost is:

c1m1 + · · · + clml = mcT η. [32]

Suppose we have a cost budget of B. One can then add a budget
constraint as a scalar linear inequality, yielding convex program:

minimize
η

log det

(
L∑

i=1

ηi ST
y,i Q−1

i Sy,i

)−1

, [33]

subject to 0 � η � 1

M
, 1T η = 1, [34]

mcT η ≤ B. [35]

Consider the output measurement covariance Qi in 30. This quan-
tity is critically important to include in the optimization formulation.
To motivate this point, consider Figures 6a and 6b which visualize the
battery tester’s measured voltage for ten repeated pulse inputs. Figure
6a contains time steps in which the measured voltage has variance
larger than 30 mV. This variance is uncorrelated with the order in
which the experiments are performed. In contrast, the sinusoidal tests
in Figure 6b have variance consistently around 0.3 mV. Consequently,
there can be non-trivial variation in the battery tester’s measured volt-
age, depending on the input profile. Note, our SBT2050 test system
manual claims a voltage resolution of 100 μV. The precise source of
the measurement variance is unknown.

This motivates quantification of the output measurement covari-
ance. Namely, 30–31 requires Qi for each input in the library. How-
ever, experimentally characterizing Qi for each input requires running
every experiment in the input library multiple times (e.g. 10 times) –
an intractable task. Therefore, we propose to predict the covariance Qi

using a regression model trained from a small number of experiments.
This enables us to account for variance in experimental trials without
running a large number of experiments.

The size of matrix Q is based on the number of samples taken
during an experiment. Due to this, we scalarize Q in order to compare
how Q varies across experiments that have different lengths. For a
given experiment and its corresponding covariance matrix Qexp, we
scalarize Qexp using the square root of the mean across the diagonal
entries of Qexp:

q =
√√√√ 1

n

n∑
i

Qexp
i,i , [36]

where n is the dimension of the matrix Q. Next, we seek a regression
model to predict q from the current input profile. To this end, we
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Figure 6. Experimental outputs and quantification. (a) Zoom of multiple, superimposed pulse experimental trials. This experiment has up to 30 mV of measured
voltage variance. (b) Zoom of multiple, superimposed sinusoidal experimental trials. This experiment has 0.3 mV of measured voltage variance. (c) Scalarized
variance from training data, testing data, and regression model (curve fit).

consider a metric of “input intensity” as the feature in our regression
model. Namely, we propose to use the L2 norm, Ĩ , to characterize
input intensity where

Ĩ =
√∫ t f

0
I (t)2dt. [37]

Using Ĩ as a regression model feature, we fit the following regres-
sion models to q:

for charge inputs : q̂c = ac Ĩ + bc,

for discharge inputs : q̂d = ad · ebd · Ĩ , [38]

where ac = 6.2382 × 10−5, bc = −4.0739 × 10−3, ad = 2.1045 ×
10−4, bd = 1.7020 × 10−2. For inputs that are not purely charge or
discharge, the two models are averaged:

q̂cd = 1

2
(qc + qd ) . [39]

The scalar predictions q̂ are then squared and constructed into a
matrix according to:

Q̂ = q̂2 · In, [40]

where In is an n ×n identity matrix. For training, 5 drive cycle profiles
are used to estimate the parameters ac, bc, ad , bd in 38. We test the
predicted variance on drive cycle inputs. Data for training and testing
is provided in Figure 6c, along with the curve fit regression model
predictions.

After obtaining experimental data, we now seek to optimally fit
the parameter vector θ to this data. The optimization problem for
parameter identification can be formulated as a nonlinear least squares
problem:

minimize
θ̂

M∑
i=1

k f∑
k=0

[
yi (k) − ŷi (k; θ̂)

Qi (k)

]2

, [41]

where k indexes the timed samples, M is the number of optimized
input profiles obtained from optimal input design, yi (k) is the experi-
mentally measured voltage, ŷi (k; θ̂) is the model’s voltage prediction,
and Qi (k) is the measurement variance for input profile i at time step
k. The Levenberg-Marquardt algorithm is used to update the parame-
ters θ̂ iteratively to solve the nonlinear optimization problem 41. This
algorithm adaptively updates the parameter estimates via a hybridiza-
tion of the gradient descent update and the Gauss-Newton update:35

[
JT WJ + γ · diag(JT WJ)

]
�θ = JT W(y − ŷ), [42]

where J = ∂ ŷ/∂ θ̂ is the local sensitivity of the output ŷ, and W
is the inverse of the measurement error covariance matrix, W =
Q−1. The value of γ weighs gradient descent update against Gauss-
Newton update. Conveniently, the Levenberg-Marquardt algorithm

Table X. Input profiles from optimal experimental design.

Group 1 Group 2 Group 3 Group 4

#339 #90 #292 #120
#342 #120 #365 #343
#345 #339 #467 #362
#348 #345 #503 #503
#365 #365 #507 #507

directly utilizes the Jacobians computed via automatic differentiation,
obtained from the sensitivity analysis. Then, the parameter updates
are iteratively updated according to:

θ(n + 1) = θ(n) + �θ, [43]

where n is the iteration index.
After optimally fitting the parameters, estimation error statistics

are calculated according to

ρθ = JT WJ, [44]

σθ = √
diag[JT WJ]−1, [45]

where ρθ is the parameter covariance matrix, and σθ is the standard
parameter error. Lastly, 95% confidence intervals for the parameter
estimates are calculated as follows:

θ̂ − t (1−0.05,N )
σθ√

N
≤ θ∗ ≤ θ̂ + t (1−0.05,N )

σθ√
N

, [46]

where N is the number of observations, and t is the upper critical
value for the t-distribution with n − 1 freedom.36

Experimental Results

In this section the proposed optimal experimental design is applied
to a 18650 Lithium nickel-cobalt-aluminum oxide (NCA) battery cell
manufactured by Panasonic, with rated capacity of 2700mAh, Vmax:
4.2V, Vmin: 2.5V, and nominal voltage: 3.6V. To assess the bene-
fits of our proposed approach, we compare results against parameter
identification using a conventional approach with standard test cycles.

Parameter identification results.—With consideration for output
measurement error covariance Q, the results for optimal input se-
lections for parameter identification are listed in the Table X. The
optimized inputs have moderate magnitude and do not increase cell
temperature more than 5◦C. Based on the sensitivity analysis and
parameter grouping, we estimate parameters for each group in a cu-
mulative fashion. For example, we allow the Group 1 parameters to
be refined with Group 2 parameters while fitting the model parameter
to Group 2 experimental data. Similarly, Group 1 & 2 parameters are
refined with Group 3 parameters and so on. Since we do not have
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Figure 7. Identification results for optimal designed inputs. (a) Identification results for Group 1 parameters. (b) Identification results for Group 2 parameters. (c)
Identification results for Group 3 parameters. (d) Identification results for Group 4 parameters.

information on the true parameters, it is useful to identify the pa-
rameters in a cumulative way to prevent overfitting and increase the
degrees of freedom during optimization. The authors’ previous work
also showed that an optimized input reduces the condition number of
the objective function’s Hessian with respect to the parameters.37 This
accelerates gradient descent methods for parameter estimation.

Figure 7 displays the parameter identification results for each
group. For instance, Group 1’s optimal input consists of a series of
concatenated input profiles with id #339, 342, 345, 348, 365, as shown
in Figure 7a. We also plot the identified model’s voltage prediction
versus the experimentally measured voltage. Finally, the cumulative

distribution function of the absolute voltage prediction error before
and after applying parameter estimation are displayed in the bottom
subplot. Note the most significant improvements relative to the nom-
inal parameter values come after applying the Group 1 optimized
inputs. This is intuitive, as the Group 1 parameters have the greatest
sensitivity, by definition.

The final parameter estimates along with their 95% confidence
intervals are listed in Table XI. The identified parameter values are
also visualized in Figure 8 on a normalized axis, along with the nom-
inal values for comparison. The 95% confidence intervals are also
visualized by error bars for each parameter, and correspond to the
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Table XI. Final identification results for NCA 18650 Li-ion battery.

Parameter Unit Lower Upper Nominal Result 95% C.I.†

D−
s [m2 s−1] 2.25e-16 1.05e-12 3.90e-14 2.634e-14 2.407e-18

D+
s [m2 s−1] 2.00e-16 1.00e-12 1.00e-13 6.625e-14 1.548e-17

R−
s [m] 1.00e-06 1.00e-04 10.9e-06 20.235e-06 8.362e-10

R+
s [m] 1.00e-06 1.00e-04 10.9e-06 17.163e-06 7.494e-10

ε−
s [-] - - - 0.5438 -

ε+
s [-] - - - 0.6663 -

σ− [S m−1] 50 500 100 500 1.740e+03
σ+ [S m−1] 50 500 100 500 1.334e+02
De(·) [m2 s−1] 0.5 1.5 1 1.195 1.176e-03
ε−

e [-] 0.18 0.45 0.3 0.289 3.687e-04
ε

sep
e [-] 0.45 0.5 0.5 0.468 5.801e-04

ε+
e [-] 0.18 0.33 0.3 0.307 5.523e-04

κ(·) [S m−1] 0.5 1.5 1 1.398 1.308e-03
t0
c [-] 0.36 0.363 0.363 0.36 5.585e-04
d ln fc/a
d ln ce

(·) [-] 0.5 1.5 1 0.573 9.971e-04
k− [(A m−2)(m3 mol−1)(1+α)] 7.5e-05 7.5e-03 7.5e-04 7.5e-05 4.457e-07
k+ [(A m−2)(m3 mol−1)(1+α)] 2.3e-04 2.3e-02 2.3e-03 2.3e-04 4.614e-06
R−

f [� m2] 1.0e-05 1.0e-03 5.0e-04 8.719e-05 6.773e-06
R+

f [� m2] 1.0e-04 1.0e-03 1.0e-03 4.619e-04 6.963e-06
nLi,s [mol] - - - 0.1406 -
ce(x, 0) [mol m−3] 500 1500 1000 1500 8.191e-01

†Confidence interval calculated at the end of identification process in Figure 7d.

optimized input for that parameter. Note that parameter bounds are
obtained from the literature38–41 to ensure that the identified values are
physically meaningful. Nominal parameter values that are away from
the true parameter values could yield inaccurate sensitivities. To over-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Nominal value
Point estimate
Confidence interval

Figure 8. Parameter estimates and 95% confidence intervals versus the nom-
inal parameter values.

come this issue, we identify the most highly sensitive parameters at
first to mitigate the negative effects as we accumulate the parameters
to estimate. Furthermore, orthogonalized sensitivity analysis assists to
determine the most significant parameters to model output. The results
indicate that strongly identifiable parameters (e.g. R±

s ) have narrow
confidence intervals while weakly identifiable parameters (e.g. σ±)
have relatively wide confidence intervals. This finding is intuitive,
since large variations in the weakly identifiable parameters produce
trivial changes in the voltage output trajectory, as demonstrated in
Figure 5.

Validation

In this section, the proposed optimal experimental design (OED)
is tested on various input profiles not used for identification, including
driving cycles, sinusoidal inputs, and pulse inputs. In order to inves-
tigate the performance of the proposed approach, a “conventional”
experimental design approach is considered for comparison. It con-
sists of 7 standard constant charge/discharge profiles, along with a
driving cycle. Unlike the proposed approach, the conventional ap-
proach does not group parameters, nor design inputs to maximize
identifiability. All parameters of interest are identified from concate-
nating experimental data. The Levenberg-Marquardt algorithm is also
utilized to fit parameter values. The parameters are fit using an “all-
in-one” approach, meaning they are not grouped nor fit sequentially.
All parameters are fit simultaneously.

Figures 9a and 9b compare the proposed and conventional ap-
proach to experimental constant discharge data with respect to battery
capacity. These figures demonstrate that our proposed approach out-
performs the conventional approach in terms of voltage accuracy.
Table XII provides the RMSE on up to 90% of capacity range for the
0.5C and 1C discharge cases. Both experimental design approaches
improve the model accuracy compared to nominal parameters. How-
ever, our proposed approach outperforms the conventional approach.
Since we do not consider thermal parameters in this paper, the volt-
age prediction accuracy decreases as temperature evolves away from
25◦C. Specifically, constant discharge at 1C is enough to produce
non-trivial heat generation and cause surface temperature to nearly
reach 30◦C. The voltage prediction in the extremely low SOC region,
such as below 3V, is difficult to match with experimental data. In this
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Figure 9. Experimental validation results for the NCA 18650 battery with testing profiles. (a) 0.5C validation with respect to discharge capacity. (b) 1C validation
with respect to discharge capacity. (c) Sinusoidal input validation. (d) Pulse input validation.

region voltage drops dramatically and we have insufficient data sam-
pling granularity to accurately identify the equilibrium structure. On
the other hand, battery cells rarely operate in this region in practice.

Besides constant discharge tests, validation is also conducted on
sinusoidal and pulse inputs to assure that the OED approach is able
to capture a comprehensive set of input profiles. Figures 9c and 9d
show the applied current profile and output voltage for sample si-
nusoidal and pulse inputs profiles. The voltage accuracy is calculated
and summarized in Table XIII. Again, the OED approach outperforms
the conventional approach.

Lastly, we use the driving cycle inputs described in TableVIII for
validation. These driving cycles originate from automotive fuel emis-

Table XII. RMSE between simulation and experimental
measurement up to 90% capacity in constant discharge.

Parameters 0.5C discharge 1C discharge

Nominal parameters 33.7 mV 55.7 mV
Conventional approach 19.9 mV 36.1 mV

Proposed approach 11.8 mV 25.5 mV

sion testing. The RMSE calculations are summarized in Table XIV.
The results show that the OED approach outperforms the conventional
approach in every case.

Table XIII. RMSE between simulation and experimental
measurement with sinusoidal and pulse inputs.

Input profiles Errors in OED [mV] Errors in conventional [mV]

Sinusoidal input 10.13 12.01
Pulse input 14.06 16.63

Table XIV. RMSE between simulations and experimental
measurements with driving cycle inputs.

Input profiles Errors in OED [mV] Errors in conventional [mV]

DC 1 6.89 7.96
DC 2 8.49 12.50
LA 92 11.90 13.70
SC 04 14.50 17.20
UDDS 12.40 14.70
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Conclusions

In this work we have established an optimal experimental design
(OED) framework for systematically identifying the parameters of
an electrochemical battery model. We summarize our unique key
contributions as follows.

1. A sensitivity analysis for the full-order electrochemical model,
known as the Doyle-Fuller-Newman (DFN) model, is executed
by deriving the sensitivity differential algebraic equations using
Jacobians obtained via automatic differentiation. To the best of
the authors’ knowledge, an sensitivity analysis for all the electro-
chemical parameters has never been executed before. We place
emphasis on this sensitivity analysis, as it plays a crucial role
in computing the Fisher information matrix, and the parameter
estimation algorithm via automatic differentiation.

2. We formulate an optimal experimental design via convex op-
timization. Rather than solving a large-scale nonlinear optimal
control problem, we propose an input selection problem where
the optimal inputs are selected from a (large) discrete set. No-
tably, we quantify the experimental output measurement variance
for our battery tester to trade off Fisher information with mea-
surement variance.

3. We provide the confidence intervals along with the parameter es-
timates via nonlinear least squares with the Levenberg-Marquardt
algorithm.

We experimentally validate the performance of the proposed OED
approach compared to conventional approach on a 18650 lithium
nickel-cobalt-aluminum oxide (NCA) cell. We quantify the perfor-
mance in terms of voltage accuracy with respect to experimentally
measured voltage. We use a set of 9 validation profiles ranging from
constant current pulses to driving cycles. The proposed approach
achieves less than 15 mV RMSE in all validation scenarios, and out-
performs the conventional approach in terms of voltage accuracy in all
cases. Future work might involve further validation of the proposed
OED framework using “synthetic” voltage and current data produced
from a model with known parameter values.
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Appendix A. Electrochemical Model

Solid phase diffusion of Li-ions.—The concentration of Li-ions in solid phase in the
anode and cathode is govened by Fick’s law.

∂c±
s

∂t
(x, r, t) = 1

r2

∂

∂r

[
D±

s r2 ∂c±
s

∂r
(x, r, t)

]
. [A1]

The boundary conditions for the solid-phase diffusion PDE (A1) are

∂c±
s

∂r
(x, 0, t) = 0,

∂c±
s

∂r
(x, R±

s , t) = − 1

D±
s

j±
n . [A2]

Eletrolyte diffusion of Li-ions.—The lithium concentration in the electrolyte changes
due to concentration gradient-induced diffusive flow of ions and the current ie .

ε j
e
∂c j

e

∂t
(x, t) = ∂

∂x

[
Deff

e (c j
e )

∂c j
e

∂x
(x, t) + 1 − t0

c

F
i j
e (x, t)

]
, j ∈ {−, sep, +} . [A3]

The boundary conditions for the electrolyte-phase diffusion PDE (A3) are given by

∂ce

∂x
(0−, t) = ∂ce

∂x (0+, t) = 0, [A4]

Deff,−
e (ce(L−))

∂ce

∂x
(L−, t) = Deff,sep

e (ce(0sep)) ∂ce
∂x (0sep, t), [A5]

Deff,sep
e (ce(Lsep))

∂ce

∂x
(Lsep, t) = Deff,+

e (ce(L+)) ∂ce
∂x (L+, t), [A6]

ce(L−, t) = ce(0sep, t), [A7]

ce(Lsep, t) = ce(0+, t). [A8]

Solid phase Ohm’s law.—The solid potential is calculated from Ohm’s law

σeff,± · ∂φ±
s

∂x
(x, t) = i±

e (x, t) − I (t). [A9]

The boundary conditions for the solid-phase potential ODE (A9) are given by

∂φ−
s

∂x
(L−, t) = ∂φ+

s

∂x
(L+, t) = 0. [A10]

Electrolyte Ohm’s law.—The electrolyte potential is described by

κeff (ce) · ∂φe
∂x (x, t) = −i±

e (x, t)

+κeff (ce) · 2RT1
F (1 − t0

c ) ·
(

1 + d ln fc/a
d ln ce

(x, t)
)

∂ ln ce
∂x (x, t).

[A11]

The boundary conditions for the electrolyte-phase potential ODE (A11) are given by

φe(0−, t) = 0, [A12]

φe(L−, t) = φe(0sep, t), [A13]

φe(Lsep, t) = φe(L+, t). [A14]

Electrolyte phase charge balance.—At each point in the electrode, the molar flux is
related to the current in the electrolyte.

∂i±
e

∂x
(x, t) = a±

s F j±
n (x, t). [A15]

The boundary conditions for the ionic current ODE (A15) are given by

i−
e (0−, t) = i+

e (0+, t) = 0. [A16]

Butler-volmer kinetics.—The molar flux jn depends on the concentration cs of lithium
in the solid, the concentration ce of lithium in the electrolyte, and the solid-phase interca-
lation overpotential η is desribed by the Butler-Volermer equation.

j±
n (x, t) = 1

F
i±
0 (x, t)

[
e

αa F
RT1

η±(x,t) − e
− αc F

RT1
η±(x,t)

]
, [A17]

where αα and αc are transport coefficients. The exchange current density i0 is given by

i±
0 (x, t) = k± [

c±
ss (x, t)

]αc [
ce(x, t)

(
c±

s,max − c±
ss (x, t)

)]αa
. [A18]

The overpotential η corresponds to the reaction of solid-phase intercalation of lithium
in the electrode.

η±(x, t) = φ±
s (x, t) − φe(x, t) − U±(c±

ss (x, t)) − F R±
f j±

n (x, t), [A19]

c±
ss (x, t) = c±

s (x, R±
s , t). [A20]

The input to the model is the applied current density I (t) [A m−2], and the output is
the voltage measured across the current collectors

V (t) = φ+
s (0+, t) − φ−

s (0−, t) − Rc I (t). [A21]

Appendix B. Thermal Model

Two-state thermal model.—A two-state model is used to capture the lumped thermal
dynamics of a cyliderical battery. This heat exchange is governed by convection and
radiation between the battery core and ambient.

C1
dT1

dt
(t) = h12[T2(t) − T1(t)] + Q̇(t), [B1]

C2
dT2

dt
(t) = h12[T1(t) − T2(t)] + h2a [Tamb(t) − T2(t)], [B2]

Q̇(t) = I (t)

[
V (t) − [U+(c+

s ) − U−(c−
s )] + T1(t)

[
∂U+

∂T1
(c+

s ) − ∂U−

∂T1
(c−

s )

]]
,

[B3]
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where the bulk state of charge, cs is given by

c±
s (x, t) = 3

(R±
s )3

∫ R±
s

0
r2c±

s (x, r, t)dr. [B4]

Temperature dependent parameters.—The parameters D±
s , De, κ, k± vary with tem-

perature via the Arrhenius relationship:

ψ = ψref exp

[
Eψ

R

(
1

T1
− 1

Tref

)]
, [B5]

where ψ represents a temperature dependent parameter, Eψ is the activation energy [J
mol−1], and ψref is the reference parameter value at reference temperature Tref .

List of Symbols

Symbol Description [SI units]

as Specific interfacial surface area [m2 m−3]
A Electrode Area [m2]
cs Lithium concentration in solid phase [mol m−3]
css Lithium concentration at surface in solid phase [mol m−3]
ce Lithium concentration in electrolyte phase [mol m−3]

d ln fc/a
d ln ce

Activity coefficient [-]
Ds Diffusion coefficient in solid phase [m2 s−1]
De Diffusion coefficient in electrolyte phase [m2 s−1]
F Faraday constant [ 96487 coulomb mol−1]
i Ionic current [A m−2]
I Applied current density [A m−2]
j Molar ion flux [mol (m2 s)−1]
k Kinetic rate constants [(A m−2)(m3 mol−1)(1+α)]
Q̇ Heat generation [W (m−2)]

Q± Electrode capacity[Ah]
Q Voltage output variance [V2]
R Universal gas constant [8.3145 J (mol K)−1]
Rc Resistance of connectors [� m2]
Rs Radius of solid particles [m]
R f Solid-electrolyte inter-phase film resistance [� m2]
t Time [seconds]
t0
c Transference number [-]

T1 Temperature at core[K]
T2 Temperature at surface [K]

Tamb Ambient temperature [K]
u Input magnitude [-]
U Open circuit potential of solid material [V]
V Terminal voltage [V]
α Charge transfer coefficients [-]
εs Volume fraction in solid phase [-]
εe Volume fraction in electrolyte phase [-]
η Overpotential of an electrode [V]
θ− Negative electrode stoichiometry [-]
θ+ Positive electrode stoichiometry [-]
κ Electrolyte conductivity [S m−1]
σ Solid phase conductivity [S m−1]
φ Electric potential [V]
x State variable vector [-]
y Output vector [-]
z Algebraic variable vector [-]
S Sensitivity vector w.r.t parameters [-]
θ Parameter vector [-]

ORCID

Saehong Park https://orcid.org/0000-0002-0547-6345

References

1. N. A. Chaturvedi, R. Klein, J. Christensen, J. Ahmed, and A. Kojic, “Algorithms for
Advanced Battery-Management Systems,” IEEE Control Systems, 30, 49 (2010).

2. and R. Klein, N. A. Chaturvedi, J. Christensen, J. Ahmed, R. Findeisen, and A. Kojic,
“Electrochemical model based observer design for a lithium-ion battery,” IEEE Trans-
actions on Control Systems Technology, 21, 289 (2013).

3. A. P. Schmidt, M. Bitzer, A.W. Imre, and L. Guzzella, “Experiment-driven electro-
chemical modeling and systematic parameterization for a lithium-ion battery cell,”
Journal of Power Sources, 195, 5071 (2010).

4. A. M. Bizeray, J. Kim, S. R. Duncan, and D. A. Howey, “Identifiability and param-
eter estimation of the single particle lithium-ion battery model,”Submitted to IEEE
Transactions on Control Systems Technology,

5. J. C. Forman, S. J. Moura, J. L. Stein, and H. K. Fathy, “Genetic identification
and fisher identifiability analysis of the Doyle-Fuller-Newman model from ex-
perimental cycling of a LiFePO 4 cell,” Journal of Power Sources, 210, 263
(2012).

6. L. Zhang, L. Wang, G. Hinds, C. Lyu, J. Zheng, and J. Li, “Multi-objective opti-
mization of lithium-ion battery model using genetic algorithm approach,” Journal of
Power Sources, 270, 367 (2014).

7. L. Zhang, C. Lyu, G. Hinds, L. Wang, W. Luo, J. Zheng, and K. Ma, “Parameter
sensitivity analysis of cylindrical LiFePo4 battery performance using multi-physics
modeling ,” Journal of Electrochemical Society, 161, A762 (2014).

8. R. Jobman, “Identification of Lithium-Ion Physics-Based Model Parameter Values,”
Ph.D. Thesis, University of Colorado, Colorado Springs, 2016.

9. N. Jin, D. L. Danilov, P. M. J. Van den Hof, and M. C. F. Donkers, “Parameter es-
timation of an electrochemistry-based Lithium-ion battery model using a two-step
procedure and a parameter sensitivity analysis,” Draft.

10. J. Marcicki, M. Canova, A. T. Conlist, and G. Rizzoni, “Design and parametrization
analysis of a reduced-order electrochemical model of graphite/LiFePO4 cells for
SOC/SOH estimation,” Journal of Power Sources, 237, 310 (2013).

11. J. Vazquez-Arenas, L. E. Gimenez, M. Fowler, T. Han, and S. K. Chen, “A rapid esti-
mation and sensitivity analysis of parameters describing the behavior of commercial
Li-ion batteries including thermal analysis,” Energy Conversion and Management,
87, 472 (2014).

12. M. J. Rothenberger, J. Anstrom, S. Brennan, and H. K. Fathy, “Maximizing Pa-
rameter Identifiability of an Equivalent-Circuit Battery Model Using Optimal Pe-
riodic Input Shaping,” 2014 ASME Dynamic Systems and Control Conference,
2014.

13. J. Liu, M. Rothenberger, S. Mendoza, P. Mishra, Y. Jung, and H. K. Fathy, “Can
an Identifiability-Optimizing Test Protocol Improve the Robustness of Subsequent
Health-Conscious Lithium-ion Battery Control? An Illustrative Case Study,” 2016
American Control Conference, 2016.

14. G. Franceschini and S. Macchietto, “Model-based design of experiments for pa-
rameter precision: State of the art,” Chemical Engineering Science, 63, 4846
(2008).

15. K. E. Thomas, J. Newman, and R. M. Darling, “Mathematical modeling of lithium
batteries,” Advances in lithium-ion batteries, Springer, pp. 345-392, 2002.

16. X. Lin, H. E. Perez, S. Mohan, J. B. Siegal, A. G. Stefanopoulou, Y. Ding, and
M. P. Castanier, “ A lumped-parameter electro-thermal model for cylindrical batter-
ies,” Journal of Power Sources, 257, 1 (2014).

17. V. R. Subramanian, V. Boovaragavan, V. Ramadesigan, and M. Arabandi, “Mathemat-
ical model reformulation for lithium-ion battery simulations: Galvanostatic boundary
conditions,” Journal of Electrochemical Society, 156, A260 (2009).

18. J. C. Forman, S. Bashash, J. L. Stein, and H. K. Fathy, “Reduction of an
electrochemistry-based li-ion battery model via quasi-linearization and pade approx-
imation,” Journal of Electrochemical Society, 158, A93 (2011).

19. G. Fan, K. Pan, and M. Canova, “A comparison of model order reduction techniques
for electrochemical characterization of lithium-ion batteries, ” in 2015 IEEE Decision
and Control Conference, 3922, 2015.

20. A. M. Bizeray, S. Zhao, S. R. Duncan, and D. A. Howey, “ Lithium-ion battery
thermal-electrochemical model-based state estimation using orthogonal colloca-
tion and a modified extended Kalman filter,” Journal of Power Sources, 296, 400
(2015).

21. H. Yue, M. Brown, F. He, J. Jia, and D. B. Kell, “ Sensitivity analysis and robust
experimental design of a signal transduction pathway system,” International Journal
of Chemical Kinetics, 40, 730 (2008).

22. H. Khalil, “ Nonlinear systems ”, Prentice Hall, 2002.
23. A. Joel, “A General-Purpose Software Framework for Dynamic Optimization,”Ph.D.

Thesis, Areberg Doctorl School, KU Leuven, 2013.
24. A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E. Shumaker,

and C. S. Woodward, “SUNDIALS: Suite of nonlinear and differential/algebraic
equation solvers,” ACM Transactions on Mathematical Software (TOMS), 31, 363
(2005).

25. N. Chaturvedi, R. Klein, J. Christensen, J. Ahmed, and A. Kojic, “ Method and
system for estimating a capacity of individual electrodes and the total capacity of a
lithium-ion battery system, ”Patents, EP 20,140,707,912, 2016.

26. D. LeBlanc, “ Road departure crash warning system field operational test: methodol-
ogy and results. volume 1: technical report, ”Tehnical Report., University of Michi-
gan, Ann Arbor, 2006.

27. Environmental protection agency, “ Vehicle and Fuel Emission Testing, ”Tehnical
Report.

28. B. F. Lund and B. A Foss, “ Parameter ranking by orthogonalization-applied to non-
linear mechanistic models,” Automatica, 44, 278 (2008).

29. A. Bjorck, “ Solving linear least squares problems by Gram-Schmidt orthogonaliza-
tion,” BIT Numerical Mathematics, 7, 1 (1967).

30. E. Walter and L. Pronzate, “Identification of parametric models from experimental
data,”Springer Verlag, 1997.

31. T. M. Cover and J. A. Thomas, “ Elements of information theory,”John Wiley & Sons,
2012.

https://orcid.org/0000-0002-0547-6345
http://dx.doi.org/10.1109/MCS.2010.936293
http://dx.doi.org/10.1109/TCST.2011.2178604
http://dx.doi.org/10.1109/TCST.2011.2178604
http://dx.doi.org/10.1016/j.jpowsour.2010.02.029
http://dx.doi.org/10.1016/j.jpowsour.2012.03.009
http://dx.doi.org/10.1016/j.jpowsour.2014.07.110
http://dx.doi.org/10.1016/j.jpowsour.2014.07.110
http://dx.doi.org/10.1149/2.048405jes
http://dx.doi.org/10.1016/j.jpowsour.2012.12.120
http://dx.doi.org/10.1016/j.enconman.2014.06.076
http://dx.doi.org/10.1016/j.ces.2007.11.034
http://dx.doi.org/10.1016/j.jpowsour.2014.01.097
http://dx.doi.org/10.1149/1.3065083
http://dx.doi.org/10.1149/1.3519059
http://dx.doi.org/10.1016/j.jpowsour.2015.07.019
http://dx.doi.org/10.1002/kin.20369
http://dx.doi.org/10.1002/kin.20369
http://dx.doi.org/10.1145/1089014.1089020
http://dx.doi.org/10.1016/j.automatica.2007.04.006
http://dx.doi.org/10.1007/BF01934122


Journal of The Electrochemical Society, 165 (7) A1309-A1323 (2018) A1323

32. K. Chaloner and I. Verdinelli, “Statistical Science,”JSTOR, 273, (1995).
33. M. Grant and S. Boyd, “CVX: Matlab Software for Disciplined Convex Programming,

version 2.1 ”, 2014.
34. S. Boyd, “Convex optimization”, Cambridge university press, 2009.
35. K. Levenberg, “ A method for the solution of certain non-linear problems in least

squares,” Quarterly of applied mathematics, 2, 164 (1944).
36. W. N. Venables and B. D. Ripley, “Modern applied statistics with S-PLUS, ”Springer

Science & Business Media, (2013).
37. S. Park, K. Kato, Z. Gima, R. Klein, and S. Moura, accepted in “Optimal Input

Design for Parameter Identification in an Electrochemical Li-ion Battery Model,
”2018 American Control Conference, 2018.

38. W. Fang, O. Kwon, and C. Wang, “Electrochemical–thermal modeling of au-
tomotive Li-ion batteries and experimental validation using a three-electrode
cell,”International journal of energy research, 2010.

39. D. M. Bernardi and J. Go, “ Analysis of pulse and relaxation behavior in lithium-ion
batteries,” Journal of Power Sources, 196, 412 (2011).

40. K. Uddin, S. Perera, W. D. Widanage, L. Somerville, and J. Marco, “ Characterising
lithium-ion battery degradation through the identification and tracking of electro-
chemical battery model parameters,” Batteries, 2, 13 (2016).

41. T. R. Ashwin, A. McGordon, D. Widanage, and P. A. Jennings, “Modified electro-
chemical parameter estimation of NCR18650BD battery using implicit finite volume
method,” Journal of Power Sources, 341, 387 (2017).

http://dx.doi.org/10.1090/qam/10666
http://dx.doi.org/10.1016/j.jpowsour.2010.06.107
http://dx.doi.org/10.3390/batteries2020013
http://dx.doi.org/10.1016/j.jpowsour.2016.12.023



