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Abstract—This paper derives provably optimal control tra-
jectories for the Li-ion battery fast charging problem. Con-
ventionally, battery charging protocols must satisfy safety con-
straints while maximizing the state of charge (SoC) level. In the
literature, both computational and experimental studies pro-
mote a diversity of algorithms, including pulse charging, multi-
step constant currents, and more. Although these approaches
yield applicable charging algorithms, the literature lacks a
rigorous analytical insight into optimal charging trajectories.
In this paper, we focus on the Pontryagin’s Minimum Principle
for solving optimal control problem for battery fast charging.
Specifically, we characterize the optimal control solution with
respect to the state constraint bound. The optimal input is
analytically derived for a reduced-order electrochemical model.
The optimal solutions follow a Bang or Bang-Ride trajectory.
Numerical simulations validate the analytical solutions.

Keywords—Constrained Optimal Control, Pontryagin Mini-
mum Principle, Electrochemical model, Battery fast charging,

I. INTRODUCTION

Battery fast charging performs an essential role in electri-
fied transportation to reduce driver’s waiting time and range
anxiety. This can be easily achieved by using aggressive cur-
rent profiles, however, it also accelerates battery degradation
effects, such as solid electrolyte interface layer growth, and
lithium plating deposition. For this reason, batteries should
be carefully monitored and controlled during fast charging
as it may cause cells to crack, leak, and lose capacity. The
role of battery management systems is to charge the batteries
as fast as possible while not violating the safety constraints.
In the literature, several model-based optimal control tech-
niques have been proposed in consideration of providing
fast-charging while guaranteeing safety constraints.

The authors in [1] formulate a minimum-time charging
problem and use nonlinear model predictive control. Simi-
larly, authors in [2] propose quadratic dynamic matrix con-
trol formulation to design an optimal charging strategy for
real-time model predictive control. In the context of aging
mechanism, the authors of [3] have studied the trade-off be-
tween charging speed and degradation, based on an electro-
thermal-aging model. The authors in [4] consider minimiz-
ing film layer growth of the electrochemical model. Authors
in [5] derive an optimal current profile using a single particle
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model with intercalation-induced stress generation. The key
novelty here is incorporating mechanical fracture, which
can be a dominant mechanism in degradation and capacity
fade. To ensure safety, a proportional–integral–derivative
controller is proposed. In [6], the authors exploit differ-
ential flatness properties of the single particle model to
yield a computationally efficient optimal control problem,
solved via pseudospectral methods. On the other hand,
the authors in [7] synthesize a state estimation and model
predictive control scheme for a reduced electrochemical-
thermal model, in order to design health-aware fast charging
strategy. The problem is formulated as a linear time-varying
model predictive control scheme, with a moving horizon
state estimation framework. Similarly, authors of [8] propose
reference governor approach for equivalent hydraulic battery
model, which integrates state estimation with a reference
governor scheme.

Nearly all existing model-based control strategies apply
computational methods that yield the following: apply max-
imal charging current until the battery reaches one of the
constraints, and then ride this constraint. There are a number
of research papers showing this rule empirically. However,
a theoretical analysis that derives and characterizes this
solution has not been executed.

To solve a deterministic optimal control problem, there
are two related methods: (i) the Hamilton-Jacobi-Bellman
(HJB), which is based on Bellman’s principle of optimality
[9], and (ii) Pontryagin Minimum Principle (PMP), which
originates from Calculus of Variations. The HJB approach
guarantees the global optimal solution. Often, the solution to
the HJB PDE is computed by the level-set method [10], and
the computational complexity is exponential in the dimen-
sion of the state. This leads to intractable computation for
high-dimensional systems. On the other hand, PMP provides
necessary conditions for optimality. The solution of PMP is
either numerically computed by, e.g. shooting methods [11],
or analytically derived. With shooting methods, computing
the solutions to the PMP conditions is more tractable for
higher-dimensional systems than the HJB approach. Further-
more, PMP yields sufficient conditions for convex optimal
control problems [12], [13]. In the literature, PMP has
been widely adopted to solve various constrained optimal
control problems. It was first applied to aircraft control and
fuel management [14], [15], and expanded to other areas
such as hybrid electric vehicle energy management [16],
train operation [17], fluid structures [18], and persistent
monitoring in multi-agent systems [19].

In this paper, we focus on the PMP approach to an-
alytically derive the optimal solution for the battery fast
charging problem. This allows us to explicitly relate model
parameters to the optimal input and state trajectories. We
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examine a reduced-order electrochemical model, as this
represents a physical interpretation of state constraints. Our
contribution is to prove that battery fast charging, for a class
of models, yields a solution that maximizes its allowable
charging current until a safety constraint is active. When
the safety constraint becomes active, then a feedback control
law is applied to ensure safety. We derive analytical solutions
from PMP and validate the proposed solutions by numerical
simulation.

The paper is organized as follows. Section II briefly sum-
marizes Pontryagin Minimum Principle in optimal control.
Section III describes the electrochemical model. Section IV
presents the optimal control problem formulation and ana-
lytical solution. In Section V, we summarize our work and
provide perspectives on future work.

II. PRELIMINARIES

This section introduces the Pontryagin Minimum Principle
for optimal control problems [12], [20]–[22]. For a given
dynamical system,

ẋ = f (x(t), u(t), t) , x(0) = x0, (1)

where x(t) ∈ Rn and u(t) ∈ Rm, and f : Rn × Rm ×
R→ Rn is assumed to be continuously differentiable in its
arguments. The control input u(t) is admissible in a given
time horizon if

u(t) ∈ Ω(t) ⊂ Rm, t ∈ [0, tf ]. (2)

The objective function is defined as

J = h (x(tf ), tf ) +

∫ tf

0

g (x(t), u(t), t) dt, (3)

where g is the running cost, g : Rn × Rm × R1 → R and
h is terminal cost, h : Rn × R1 → R. Both functions are
continuously differentiable and tf denotes the terminal time.
The objective of the optimal control problem is to design
u(t) to minimize the overall cost, mathematically,

min
u(·)
J : ẋ = f(x(t), u(t), t), x(0) = x0, u(t) ∈ Ω(t), (4)

the optimal control problem is to find an admissible control
u∗, which minimizes the objective function (3) subject to the
state equation and the associated constraints. The control u∗
is called an optimal control and x∗ is called the optimal
trajectory.

A. Unconstrained Optimal Control
Without constraints on the inputs and states, we first de-

rive the necessary conditions for (4). First, the Hamiltonian
function, H : Rn × Rm × Rn × R→ R is defined as:

H (x, u, p, t) , g (x, u, t) + p>f(x, u, t), (5)

where p ∈ Rn is called the adjoint vector or the costate
vector. The necessary conditions for u∗ to be an optimal
control are obtained by Calculus of Variations: for all u ∈
Ω(t), t ∈ [0, T ]

ẋ∗(t) =
∂H
∂p

(x∗(t), u∗(t), p(t), t) , (6)

ṗ(t) = −∂H
∂x

(x∗(t), u∗(t), p(t), t) , (7)

0 =
∂H
∂u

(x∗(t), u∗(t), p(t), t) , (8)

with corresponding transversality or boundary conditions,

0 =
∂h

∂x
(x∗(tf ), tf )− p(tf ), (9)

0 = H (x∗(tf ), u∗(tf ), p(tf ), tf ) +
∂h

∂t
(x∗(tf ), tf ) . (10)

With eqs. (7) and (9), we can determine the costate
trajectory. Note that p(tf ) = 0 when the terminal state is
free or the terminal cost function h(·) is zero. The conditions
for optimality are also sufficient if H is convex in (x, u) for
each (p, t) ∈ Rn × [0, T ] and h(x, tf ) is convex in x [12],
[13].

B. Constrained Optimal Control
Most control systems have constraints on inputs and states

inherently. Based on the Hamtiltonian function in (5), we
add some of features of constraint functions to construct the
constrained optimal control problem. First of all, the input
u(t) is admissible if it is piecewise continuous and satisfies
the mixed constraints, such as

l(x(t), u(t), t) ≤ 0, t ∈ [0, tf ], (11)

where l : Rn×Rm×R→ Rq is continuously differentiable.
In addition, we can consider pure state variable inequality
constraints, namely,

c(x(t), t) ≤ 0, t ∈ [0, tf ], (12)

where c : Rn × R → Rnc . For example, suppose states are
required to be positive, x(t) ≥ 0. In any interval where
x(t) = 0, we must have ẋ(t) ≥ 0 so that x does not
become negative. Lastly, the terminal state is constrained
by inequality and equality constraints, namely

a(x(tf ), tf ) ≤ 0, (13)
b(x(tf ), tf ) = 0, (14)

where a : Rn × R → Rna and b : Rn × R → Rnb
are continuously differentiable. The Lagrange function, L :
Rn × Rm × Rn × Rq × Rnc × R→ R is defined as:

L(x, u, p, µ, η, t) , H(x, u, p, t) + µ>l(x, u, t) + η>c(x, t),
(15)

where µ and η are Lagrange multipliers. When convenient,
we omit the time argument for readability. Since the con-
straints are adjoined directly to form the Lagrangian, this
method is called direct adjoining method. The Lagrange
multipliers satisfy the complimentary slackness conditions,
namely,

µ(t) ≥ 0, µ(t)>l(x, u, t) = 0, (16)
η(t) ≥ 0, η(t)>c(x, t) = 0. (17)

Pontryagin’s Minimum Principle allows for a jump in p(t)
at a point in time when the state x(t) enters its constraint
boundary. The jump must satisfy the conditions

p(τ−) = p(τ+) + ζ(τ)
∂c

∂x
(x∗(τ), τ) , (18)

where ζ(τ) ≥ 0 and

H
(
x∗(τ), u∗(τ−), p(τ−), τ

)
=

3507



H
(
x∗(τ), u∗(τ+), p(τ+), τ

)
− ζ(τ)

∂c

∂t
(x∗(τ), τ), (19)

at a time τ at which one of the state variables has just
reached its boundary value. An instant τ is called entry
time if there is an interior interval ending at t = τ and
a boundary interval starting at τ . Similarly τ is called an
exit time if a boundary interval ends and an interior interval
starts. If the trajectory just touches the boundary, then τ is
called contact time. Taken together, entry, exit, contact times
are called junction times.

The necessary conditions for the optimality of u∗ by using
the Calculus of Variations [21] are obtained as follows:

ẋ∗(t) =
∂L
∂p

(x∗(t), u∗(t), p(t), µ(t), η(t), t) , (20)

ṗ(t) = −∂L
∂x

(x∗(t), u∗(t), p(t), µ(t), η(t), t) , (21)

0 =
∂L
∂u

(x∗(t), u∗(t), p(t)) , (22)

with corresponding transversality conditions,

0 =
∂h

∂x
(x∗(tf ), tf ) + α

∂a

∂x
(x∗(tf ), tf ) + β

∂b

∂x
(x∗(tf ), tf )

+ γ
∂c

∂x
(x∗(tf ), tf )− p(tf ), α ≥ 0 (23)

0 = γ>c (x∗(tf ), tf ) , γ ≥ 0, (24)

the complimentary slackness conditions hold

µ(t) ≥ 0, µ(t)>l(x∗, u∗, t) = 0, (25)
η(t) ≥ 0, η(t)>c(x∗(t), t) = 0, (26)
ζ(τ) ≥ 0, ζ(τ)c(x∗(τ), τ) = 0, (27)

and jump conditions (18)–(19) should hold at any en-
try/contact time τ . Similar to the unconstrained case, if
the Hamiltonian is convex with respect to (x, u), then the
conditions are also sufficient [12], [13].

III. ELECTROCHEMICAL BATTERY MODEL

Electrochemical models achieve high accuracy and rep-
resent physical details of battery dynamics. We refer to the
Doyle-Fuller-Newman (DFN) model as a “full-order model”.
The DFN predicts the evolution of Lithium concentration for
diffusion in the solid and liquid phases, as well as charge
conservation in both electrodes [23]. On the other hand,
“reduced-order models” are widely used for computational
simplicity, analysis, and controller/observer design.

Over the past years, many researchers have studied model
reduction techniques for the DFN model. The most com-
monly used reduced-order model is the single particle model
(SPM), which idealizes each electrode as a single spherical
porous particle, while neglecting electrolyte dynamics, as
shown in Fig. 1. Specifically, the electrolyte concentration
is approximated as constant in space and time, and this
restriction causes errors which will be discussed later in this
section. The intercalation process and mass transport is mod-
eled by a linear diffusion PDE over spherical coordinates:

∂c±s
∂t

(r, t) =
1

r2

∂

∂r

[
D±s r

2 ∂c
±
s

∂r
(r, t)

]
, (28)

Figure 1: Schematic of single particle model.

with Neumann boundary conditions,

∂c±s
∂r

(0, t) = 0,
∂c±s
∂r

(R±s , t) = − 1

D±s
j±n , (29)

where jn is molar ion flux which is proportional to input
current, I(t),

j±n = ∓ I(t)

Fa±AL±
. (30)

The Neumann boundary conditions at r = R−s and
r = R+

s represent that the molar flux of lithium entering /
exiting the electrode, and is proportional to the input current
I(t). The description of each variable for SPM can be found
in [24]. The terminal voltage output is governed by a combi-
nation of electric overpotential, electrode thermodyanmics,
and Butler-Volmer kinetics, yielding:

V (t) =
RT

α+F
sinh−1

( −I(t)

2a+AL+i+0 (c+ss(t))

)
+

RT

α−F
sinh−1

( I(t)

2a−AL−i−0 (c−ss(t))

)
+ U+(c+ss(t))− U−(c−ss(t)) +RfI(t), (31)

where the exchange current density i±0 and solid-electrolyte
surface concentration c±ss are computed as:

i±0 (c±ss) = k±
√
c0ec
±
ss(t)(c

±
s,max − c±ss(t)), (32)

c±ss(t) = c±s (R±s , t). (33)

In this model, SOC is defined as the normalized volume
sum of lithium concentration in the anode:

SOCn =
3

c−s,max(R−s )3

∫ R−s

0

r2c−s (r, t)dr. (34)

There are numbers of techniques to discretize PDE (28)
in the literature [25]–[29]. Among them, we apply Padé ap-
proximation [29] to the solid-phase diffusion PDE (28). We
briefly explain Padé approximation next, since the optimal
control solution is based on this discretized model. By taking
the Laplace transform from input jn to c±s (R±s , s), the PDE
(28)–(29) is written as a transcendental transfer function:

G(s) =
c±s (R±s , s)

jn(s)
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=
R±s
D±s

sinh

(√
s
D±s

R±s

)
R±s
√

s
D±s

cosh

(√
s
D±s

R±s

)
− sinh

(√
s
D±s

R±s

) .
(35)

The third-order Padé approximation of (35) is:

G(s) ≈

3

R±s
+

4R±s
11D±s

s+
R±s

3

165D±s
2 s

2

s
(

1 +
3R2

55Ds
s+

R4

3465D2
s

s2
) . (36)

Then, the controllable canonical state-space form is:ċ±s1ċ±s2
ċ±s3

 =

0 1 0
0 0 1

0 − 3465D±s
2

R±s
4 − 189D±s

R±s
2


c±s1c±s2
c±s3

+

 0
0

3465D±s
2

R±s
4

 j±n
(37)

c±s (R±s , s) =
[

3
R±s

4R±s
11D±s

R±s
3

165D±s
2

]
. (38)

Lastly, we can derive the state-space realization where the
bulk concentration, c̄−s = SOCn · c−s,max is expressed as a
state in a Jordan-form. We perform linear transformation
such that the system matrix has diagonal form,

ẋ = Ax+Bu,

where

A =

[
a1 0 0
0 a2 0
0 0 0

]
, B =

[
b1
b2
b3

]
, (39)

and we define surface concentration, c−ss = C>x, as an
output function of the states, x = [x1, x2, x3]>, and bulk
concentration for the anode is a state, c̄−s = x3.

c̄−ss =
[

3
R−s

4R−s
11D−s

(R−s )3

165(D−s )2

]
x = C>x. (40)

Table I shows the values of the A, B, C matrices for
several common Li-ion chemistries. Note that the sign of the
elements are consistent, which is important for generalizing
the optimal control solutions across chemistries.

LCO† NCA‡ NMC‡‡

a1 -7.3E-02 -1.2E-02 -3.4E-01
a2 -8.9E-03 -1.47E-03 -4.2E-02

B

 6.5E-07
-8.0E-08
-1.7E-01

  2.4E-05
-3.0E-06

-3.2

  2.2E-07
-2.7E-08
-1.2E-01



C

-1.3E+06
1.5E+06

1

 -6.8E+05
7.7E+05

1

 -2.9E+06
3.3E+06

1


†Lithium Cobalt Oxide [30] ,‡ Nickel Cobalt Aluminum Oxide [23]
‡‡ Nickel Manganese Cobalt Oxide

Table I: A, B, and C matrices for three common battery
chemistries.

IV. FAST CHARGING OPTIMAL SOLUTION

In this section, we derive the optimal solution for the fast
charging problem. First, we start with the Single Particle
Model (SPM) optimal control problem formulated as fol-
lows:

max
u(t)

∫ tf

t0

x3(t)dt (41)

subject to ẋ1 = a1x1 + b1u, x1(0) = x10,

ẋ2 = a2x2 + b2u, x2(0) = x20,

ẋ3 = b3u, x3(0) = x30,

− ub ≤ u ≤ ub,
C>x ≤ Cb,

where −ub represents the maximum charging rate, and
the state constraint places an upper bound on the sur-
face concentration in (40), denoted by Cb. The surface
concentration cannot exceed its maximum concentration
level, c−s,max, which is determined by the electrode’s elec-
trochemical properties. The objective is to maximize the
bulk concentration of the anode, in a fixed time horizon,
in the presence of input and state constraints. Note that
h(x(tf ), tf ) = a(x(tf ), tf ) = b(x(tf ), tf ) = 0 in (3),
(13), (14). Our objective is to characterize the battery fast
charging problem by using Pontryagin Minimum Principle.
The necessary optimal conditions discussed in Section II are
computed as follows. The Lagrangian is:

L = x3 + p> (Ax+Bu)

+ µ1(u+ ub) + µ2(ub − u) + η(Cb − C>x). (42)

where p = [p1, p2, p3]> is the co-state vector, and µ1, µ2, η
are Lagrange multipliers associated with input and state
constraints. Note that µ1, µ2 do not affect the sign of L due
to the complimentary slackness. To find the optimal control
solution, we focus on the part of L that depends on u

L̃ = (b1p1 + b2p2 + b3p3)u+ (µ1 − µ2)u, (43)

The costate dynamics (21) and input optimality (22) are
computed as

ṗ1(t) = −a1p1 + ηc1, (44)
ṗ2(t) = −a2p2 + ηc2, (45)
ṗ3(t) = −1 + ηc3, (46)

0 = p1b1 + p2b2 + p3b3 + µ1 − µ2. (47)

Next, we state the two main results of this paper. They
describe the optimal solution with inactive constraints and
active constraints, which respectively give Bang and Bang-
Ride solutions. First of all, the state trajectory for maximum
charging current can be derived analytically:

x1(t) = ea1tx1(0) +
b1ub
a1

(1− ea1t), (48)

x2(t) = ea2tx2(0) +
b2ub
a2

(1− ea2t), (49)

x3(t) = −b3ubt+ x3(0). (50)

The range of Cb that yields an unconstrained optimal
control solution to (41) is given by:

c1x1(tf ) + c2x2(tf ) + c3x3(tf ) , C̄ < Cb. (51)
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Theorem 1. If Cb > C̄, then the optimal solution to (41) is
to maximize the current input, −ub, so-called Bang control,
and the state constraint is not active during the control
horizon.

Proof: Inactive state constraint implies that γ = 0
in transversality conditions (23), (24) and the Lagrange
multiplier, η(·) ≡ 0. Then, we can find the final conditions of
co-states p(t) at terminal time by solving co-state dynamical
equations in (44) – (46), such as:

p1(tf ) = p2(tf ) = p3(tf ) = 0,

⇐⇒ p1(0) = p2(0) = 0, p3(0) = tf .

Therefore, the co-state trajectories are:

p1(t) = p2(t) = 0, p3(t) = −t+ tf .

We find that (43) is maximized when u = −ub, which
implies that the optimal current is the maximum charging
rate.

Theorem 2. If Cb < C̄, then the optimal solution to (41)
is to maximize the current input, −ub, until the inequality
constraint becomes active. Then it rides the constraint bound
– Bang-Ride control. Furthermore, the switching time1, σ,
does not exist for Cb < C̄ but the Junction time, τ , exists.

Proof: To prove this theorem, we consider two cases:
1) when the state constraint becomes active at the terminal
time, 2) when the state constraint becomes active prior to
the terminal time.

Case 1: Consider the case when the state constraint
becomes active at the terminal time, which implies that
γ 6= 0. Then the transversality condition (23) yields

p1(tf ) = −c1γ,
p2(tf ) = −c2γ,
p3(tf ) = −c3γ,

with the final conditions above, the co-state trajectories
become a function of γ, such as,

p1(t) =
−c1γ
e−a1tf

e−a1t, (52)

p2(t) =
−c2γ
e−a2tf

e−a2t, (53)

p3(t) = −t− c3γ + tf . (54)

Plugging this into b1p1 + b2p2 + b3p3 in (43), then the
switching time occurs when the sign of (43) changes. That
is, the optimal current input switches from −ub to +ub. The
existence of a switching time σ is equivalent to the existence
of a root of b1p1 + b2p2 + b3p3 = 0 w.r.t. t, namely:

γ

(
−b1c1
e−a1tf

e−a1t +
−b2c2
e−a2tf

e−a2t − b3c3
)

= b3(t− tf ).

(55)

The range of γ that yields a solution t = σ(γ) to (55) is

0 ≤ γ ≤ −b3tf
−b1c1
e−a1tf

+ −b2c2
e−a2tf

− b3c3
≈ tf . (56)

1switching refers to shift other extreme value, e.g., −ub → ub.

Then the Bang-Bang control law is obtained as follows:

u∗(t) =

{
−ub, t ≤ σ(γ),

+ub, t > σ(γ),
(57)

and the state trajectory is computed as:

x1(t) =


ea1tx1(0) + b1ub

a1
(1− ea1t), t ≤ σ(γ),

ea1(t−σ(γ))x1(σ(γ))−
b1ub
a1

(1− ea1(t−σ(γ))), t > σ(γ),

(58)

x2(t) =


ea2tx2(0) + b2ub

a2
(1− ea2t), t ≤ σ(γ),

ea2(t−σ)x2(σ(γ))−
b2ub
a2

(1− ea2(t−σ)), t > σ(γ),

(59)

x3(t) =

{
−b3ubt+ x3(0), t ≤ σ(γ),

b3ub(t− σ(γ)) + x3(σ(γ)), t > σ(γ).
(60)

We claim that σ(γ) does not exist as the state constraint
is violated before t reaches σ(γ). That is C>x(σ) >
C>x(tf ),∀σ(γ). Note that σ(γ) is determined by γ in (56),
then the constraint bound, Cb is obtained as C>x(tf ), where
x(tf ) follows from (58) – (60). We can check that the fol-
lowing statement holds for given ranges of electrochemical
values in Table I :

c1
[
(ea1(tf−σ)− 1)x1(σ)− b1ub

a1
(1− ea1(tf−σ))

]
+c2

[
(ea2(tf−σ) − 1)x2(σ)− b2ub

a2
(1− ea2(tf−σ))

]
+c3

[
b3ub(tf − σ)

]
< 0. (61)

We conclude that the switching time does not exist when
the state constraint becomes active at the terminal time. The
switching time occurs only if Cb = C̄, and is equivalent
to terminal time, tf . Note that we speculated that the state
constraint becomes active when the constraint Cb is less than
C̄, which is the scenario discussed in Case 2 next.

Case 2: Consider the case when the state constraint be-
comes active prior to the terminal time. Then transversality
condition (23) and junction condition (18) state that

p(tf ) = −γC, (62)
p(τ−) = p(τ+) + ζ(−C), (63)

where t = τ is the time when the state hits the state
constraint bound,

C>x(τ) = Cb. (64)

Then the input u can be found such that state does not
violate the constraint further, i.e., C>ẋ(t) = 0 ∀t ∈ [τ+, tf ].
We can find such an input by taking time derivative of the
state constraint function,

0 = C>ẋ,

= C> (Ax+Bu) , (65)

then the input u(t) becomes a state feedback control law:

u(t) = −C
>A

C>B
x , −Kx, (66)

where K ∈ R1×3. Note that the input u is potentially
discontinuous at t = τ . Plugging the feedback control
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law into the dynamical system results in the following
autonomous system:

ẋ(t) = (A−BK)x(t), t ∈ [τ+, tf ]. (67)

We claim that the feedback control law (66) is bounded
for the input constraint, namely

−ub < −Kx(t) < ub. (68)

The system is autonomous for t ∈ [τ+, tf ] such that x(t)
can be analytically derived,

−ub < −Ke(A−BK)tx0 < ub, t ∈ [τ+, tf ]. (69)

Notice that |−Ke(A−BK)tx0| ≤ |−Kx0|,∀t ∈ [τ+, tf ]
as eig(A − BK) ≤ 0 for given electrochemical model.
A bounded feedback control law ensures the Lagrange
multipliers associated with input constraints are zero, i.e.,
µ1 = 0, µ2 = 0 due to complimentary slackness. Then (47)
becomes

p>(t)B = 0, t ∈ [τ, tf ]. (70)

We aim to find γ at terminal time t = tf ,

0 = p>(tf )B = −γC>B, (71)

since C>B 6= 0, γ = 0. For the constrained optimal control
case, we divide the time horizon into two cases i) state
constraint is not active, i.e., t ∈ [0, τ ] ii) state constraint
becomes active, i.e., t ∈ [τ+, tf ].

The next step is to compute the co-state trajectory for the
following input,

u∗(t) =

{
−ub, t ∈ [0, τ ],

−Kx, t ∈ [τ+, tf ],
(72)

then the costate trajectory is obtained as follows:

p(t) =

{
e−Atp(0) + [0, 0,−t]> , t ∈ [0, τ ],[
eĀ(tf−t) − I

]
θ, t ∈ [τ+, tf ],

(73)

where

Ā =

(
I − CB>

B>C

)
A, θ =

− c1
a1c3
− c2
a2c3
0

 . (74)

The derivation of the co-state trajectory for t ∈ [τ, tf ]
is not trivial, so it is relegated to the Appendix. Given an
allowable maximum current, i.e. ub ≥ |−Kx0|, we find the
junction time τ when the state constraint becomes active,
i.e.

c1x1(τ) + c2x2(τ) + c3x3(τ) = Cb. (75)

Then we construct algebraic equations for unknowns
ζ, p(0) from 1) jump condition form of co-states in (18),
2) jump condition for Hamiltonian in (19), such as,

e−Aτp(0) +

[
0
0
−τ

]
=
[
eĀ(tf−τ) − I

]
θ + ζ(τ)C, (76)

[
e−Aτp(0) +

[
0
0
−τ

]]> (
Ax(τ) +Bu(τ−)

)

=
[(
eĀ(tf−τ) − I

)
θ
]> (

Ax(τ) +Bu(τ+)
)
, (77)

where

u(τ−) = −ub, u(τ+) = −C
>Ax(τ)

C>B
.

Then, the analytical solution of ζ is obtained as follows:

ζ(τ) =

[(
eĀ(tf−τ) − I

)
θ
]>

B
(
−C

TAx(τ)
CTB

+ ub

)
CT (Ax(τ)−Bub)

. (78)

With ζ(t) computed above, the boundary condition for
costate, p0 can be obtained as:

p(0) = eAτ
([

eĀ(tf−τ) − I
]
θ + ζ(τ)C +

[
0
0
τ

])
. (79)

Lastly, we check whether a switching time exists for
t ∈ [0, σ]. First, τ is chosen between τ ∈ [0, tf ], then Cb
is obtained by Cb = C>x(τ). By solving the algebraic
equations (76) – (77), we find p0, and then check that
b1p1(t) + b2p2(t) + b3p3(t) ≤ 0 for τ, t ∈ [0, tf ] for given
electrochemical parameters described in Table I.

Therefore, when the state constraint becomes active prior
to the terminal time, the optimal control input is to apply
state feedback control law (66), which results in riding the
constraints boundary.

Remark 1. The optimal solution for u(t) in (41) is the
global optimal solution as the necessary conditions become
necessary and sufficient conditions because (41) is convex.

The analytical solution of the optimal input, state trajec-
tory, co-state trajectory, and associated Lagrange multipliers
for the constrained optimal control problem are summarized
in Table II.

Interval t ∈ [0, τ ] t ∈ [τ, tf ]
u(t) −ub −Kx
x(t) eAtx0 −

∫ t
0
eA(t−s)Bub ds e(A−BK)(t−τ)x(τ)

p(t) e−Atp(0) +
[
0 0 −t

]> [
eĀ(tf−t) − I

]
θ

µ1(t) −pT (t)B 0
µ2(t) 0 0
η(t) 0 BᵀA

BᵀC p(t) + η(tf )

Table II: The analytical solution of constrained optimal
control problem (41) for Cb ≤ C̄. Unknown variables,
ζ, p(0), and η(tf ) are derived in (78), (79), (84).

Numerical simulation results for the optimal fast charging
problem (41) are presented in Fig. 2 to validate the proposed
analytical solution. The terminal time, tf , is chosen as
450 seconds, allowable maximum current, ub, is 5 C-rate,
and constraint bound, Cb is chosen as 50% of maximum
concentration level (for illustration). The constrained optimal
control solution satisfies Cb < C̄ from (51), and thus the
junction time occurs at t = τ = 317. Figure 2a displays the
optimal input, state constraint activation, and the normalized
objective function, which is SOC from (34). Figure 2b
exhibits the corresponding trajectories for the states and co-
states. Although difficult to see in the plots, the co-states
are discontinuous at the junction time, and the trajectories
satisfy the optimality conditions.
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(a) Input, state constraint, and normalized objective function.
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Figure 2: Numerical constrained optimal control results using analytical solutions in Table II.

V. CONCLUSION

In this work, we analyze optimal fast charging control
of Li-ion batteries. Pontryagin’s Minimum Principle is used
to derive the optimality conditions. We prove that the
optimal fast-charging control is a Bang-Ride control, which
applies maximum allowable charging current until the state
constraint becomes active, and then rides the constraint
bound to ensure safety. PMP analysis provides theoretical
evidence why optimal fast-charging protocols are Bang-
Ride control in the literature, at least for single particle
models. Furthermore, our theoretical proofs can explain why
specific constant current-constant voltage (CCCV) protocols
are candidates for optimal for experimental design in fast
charging problem [31], different experimental current pulse
profiles [32], and fast charging method design [33]. Due to
this analysis, the search space for optimal control solutions
can be reduced to Bang-Ride trajectories without loss of
optimality. On-going work involves extending PMP analy-
sis for more sophisticated electrochemical models that are
nonlinear with multiple constraints.
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VII. APPENDIX

In this appendix, the analytical solution of costate dynam-
ics for t ∈ [τ, tf ] is derived. The ODEs for the costates are

ṗ1 = −p1a1 + ηc1, ṗ2 = −p1a2 + ηc2, ṗ3 = −1 + ηc3,
(80)

where η ≥ 0. It is obvious that η(t) = 0 if t ≤ τ− due to
complimentary slackness. We also have γ = 0 as described
in (71) Then,

p(tf ) = 0 ∈ R3. (81)

From (70), (80) can be written as:

0 = Bᵀṗ(t) = Bᵀ

(
−Ap(t) +

[
0
0
−1

]
+ ηC

)
, (82)

thus we can compute η(t) such as:

η(t) =
BᵀA

BᵀC
p(t) + η(tf ), (83)

where

η(tf ) :=
Bᵀ [0 0 1]

ᵀ

BᵀC
. (84)

Substituting (83) to (80), we obtain

ṗ = −Ap+

[
0
0
−1

]
+

(
BᵀA

BᵀC
p(t) + η(tf )

)
C. (85)

We can design a constant vector

θ =
[
− c1
a1c3

− c2
a2c3

0
]ᵀ
, (86)

such that the following costate equation is derived.

p(t) = [eĀ(tf−t) − I]θ. (87)

where Ā is defined in (74).
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