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Abstract—One of the most crucial challenges faced by the Li-
ion battery community concerns the search for the minimum
time charging without damaging the cells. This can fall into
solving large-scale nonlinear optimal control problems accord-
ing to a battery model. Within this context, several model-based
techniques have been proposed in the literature. However,
the effectiveness of such strategies is significantly limited by
model complexity and uncertainty. Additionally, it is difficult to
track parameters related to aging and re-tune the model-based
control policy. With the aim of overcoming these limitations, in
this paper we propose a fast-charging strategy subject to safety
constraints which relies on a model-free reinforcement learning
framework. In particular, we focus on the policy gradient-based
actor-critic algorithm, i.e., deep deterministic policy gradient
(DDPG), in order to deal with continuous sets of actions and
sets. The validity of the proposal is assessed in simulation
when a reduced electrochemical model is considered as the real
plant. Finally, the online adaptability of the proposed strategy
in response to variations of the environment parameters is
highlighted with consideration of state reduction.

Keywords—Reinforcement learning, Actor-critic, Electrochem-
ical model, Battery charging, Optimal control,

I. INTRODUCTION

Lithium-ion batteries are crucial technologies for elec-
trified transportation, clean power systems, and consumer
electronics. Although among all the different chemistries, Li-
ion batteries exhibit promising features in terms of energy
and power density, they still present limited capacity and
long charging time. While the former is mostly related to
the battery chemistry and design phase, the latter depends
on the employed charging strategy. Within this context, the
trade-off between fast charging and aging has to be taken
into account. In fact, charging time reductions can be easily
achieved by using aggressive current profiles which in turn
may lead to severe battery degradation effects, such as Solid
Electrolyte Interphase (SEI) growth and Lithium plating
deposition. For this reason, several model-based optimal
control techniques have been proposed in the literature with
the aim of providing fast-charging while guaranteeing safety
constraints.
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The authors in [1] formulate a minimum-time charg-
ing problem and use nonlinear model predictive control.
Similarly, authors in [2] propose quadratic dynamic matrix
control formulation to design an optimal charging strategy
for real-time model predictive control. In the context of
aging mechanism, the authors of [3] have studied the trade-
off between charging speed and degradation, based on
an electro-thermal-aging model. The authors in [4] con-
sider minimizing film layer growth of the electrochemical
model. Authors in [5], [6] derive an optimal current profile
using a single particle model with intercalation-induced
stress generation. The key novelty here is incorporating
mechanical fracture, which can be a dominant mechanism
in degradation and capacity fade. To ensure safety, a pro-
portional–integral–derivative controller is proposed. On the
other hand, the authors in [7] synthesize a state estima-
tion and model predictive control scheme for a reduced
electrochemical-thermal model, in order to design health-
aware fast charging strategy. The problem is formulated as
a linear time-varying model predictive control scheme, with
a moving horizon state estimation framework. In [8], the
authors exploit differential flatness properties of the single
particle model to yield a computationally efficient optimal
control problem, solved via pseudospectral methods.

However, the exploitation of model-based charging proce-
dure has to face some crucial challenges. (i) Every model is
inherently subject to modeling mismatches and uncertainties.
(ii) The most commonly used detailed models for Li-
ion batteries are the electrochemical ones which typically
contain hundreds or thousands of states, leading to a large-
scale optimization problem. (iii) The model parameters drift
as the battery ages. It is important to notice that most of
the model-based strategies proposed in the literature rely
on simplified electrochemical models (the few ones which
implement full order models represent the boundary of
what can be done in this area) and almost none of them
consider adaptability of the control strategy to variations in
the parameters. In addition, electrochemical models present
observability and identifiability issues [9], which often lead
to the necessity of optimally designing the experiments
which have to be conducted in order to properly estimate
the parameters with a sufficiently high accuracy [10], [11].
All these issues can be addressed by using a charging
procedure based on a model-free Reinforcement Learning
(RL) framework [12]. An RL framework consists of an
agent (the battery management system) which interacts with
the environment (the battery) by taking specific actions (the
applied current) according to the environment configuration
(a.k.a. the state). The model-free property implies that the
agent learns online the feedback control policy, directly from
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interactions with the environment, such as reward and state
observation. Such policy is iteratively updated in order to
maximize the expected long-term reward. Notice that, the
reward has to be properly designed in order to make the
agent learn how to accomplish the required task.

Most RL algorithms can be classified in two different
groups: tabular methods, e.g., Q-learning, SARSA, and
approximate solutions methods which is also called “Ap-
proximate Dynamic Programming (ADP)”. While the former
performs well only in presence of small and discrete set of
actions and states, the latter can be used even with con-
tinuous state and action spaces solving the so-called “curse
of dimensionality”. On the other hand, the convergence of
the former is proven under mild assumptions. However, no
proof of convergence exists for the approximate methods in
the general case. The recent success in several applications
of RL based on deep neural networks as function approx-
imators has greatly increased expectations in the scientific
community [13]–[16]. From a control systems perspective,
the design of RL algorithms involves feedback control laws
for dynamical systems via optimal adaptive control methods
[17]. It is also important to notice that several works have
been focused in developing safe-RL strategies, which are
able to learn optimal control policy while guaranteeing
safety constraints [18], which are fundamental in the context
of battery fast-charging.

In this paper, a fast-charging strategy subject to safety
constraints, using a model-free reinforcement learning
framework, is proposed for the first time to the knowledge of
the authors in the context of Li-ion batteries. The use of such
a methodology enables adaptation to uncertain and drifting
parameters. Moreover, the exploitation of ADP-based ap-
proaches allows one to mitigate the curse of dimensional-
ity for large-scale nonlinear optimal control problems by
adopting parameterized actor/critic networks. In particular,
we focus on the Deep Deterministic Policy Gradient (DDPG)
[19] algorithm, which is an actor-critic formulation suitable
for the case of continuous actions space and includes deep
neural networks as function approximators. The safety con-
straints are considered by including a penalty in the reward
function in case of violation. The control technique is tested
by considering a Single Particle Model with Electrolyte and
Thermal (SPMeT) [20] dynamics as the battery simulator.
Two different scenarios are presented: in the first one all the
states are assumed measurable from the agent, while in the
second this assumption is dropped and only state of charge
and temperature are considered available. The results show
that the RL-agent is able to achieve high performance in both
the scenarios. Finally, we examine the online adaptability of
the proposed methodology in the case of varying parameters,
i.e. degradation.

The paper is organized as follows. Section II briefly
presents the reinforcement learning approach. Section III de-
scribes the battery models and control problem formulation.
Section IV presents case study with simulation results. In
Section V, we summarize our work and provide perspectives
on future work.

II. REINFORCEMENT LEARNING APPROACH

In this section a standard reinforcement learning setup
is presented, along with the main feature of Approximate
Dynamic Programming and actor-critic algorithm.

Figure 1: Reinforcement Learning framework.

A. Markov Decision Process, Policy and Value Functions

In the reinforcement learning framework shown in Fig. 1,
we seek the best policy that will maximize the total rewards
received from the environment E (i.e. plant). At each time
step t ∈ R+ the environment exhibits state vector, st ∈ S,
where S is the state space, the control policy (a.k.a. agent)
observes the states st and picks an action at ∈ A, with
A being the action space. This action is executed on the
environment, whose state evolves to st+1 ∈ S, according to
the state-transition probability p(st+1|st, at), and the agent
receives a scalar reward rt+1 = r(st,at). The policy is
represented by π which maps the state to the action and can
be either deterministic or stochastic. The total discounted
reward from time t onward can be expressed as:

Rt =

∞∑
k=0

γkr(st+k,at+k) (1)

where γ ∈ [0, 1] is the discounting factor.
The state value function, V π(st) is the expected total

discounted reward starting from state st. In the controls
community, this is sometimes called the cost-to-go, or
reward-to-go. Importantly, note the value function depends
on the control policy. If the agent uses a given policy π to
select actions starting from the state st, the corresponding
value function is given by:

V π(st)
.
= Eri>t, si>t∼E, ai≥t∼π

[
Rt | st

]
(2)

Then, the optimal policy π∗ is the policy that corresponds
to the maximum value of the value function

π∗ = arg max
π

V π(st) (3)

The solution of (3) is pursued by those methods which
follow the Dynamic Programming (DP) paradigm. Such
paradigm assumes a perfect knowledge of the environment
E (i.e, the state-transition probability as well as the reward
function are known).

The next definition, known as the “Q-function,” plays a
crucial role in model-free reinforcement learning. Consider
the state-action value function, Qπ(st,at), which is a
function of the state-action pair and returns a real value.
This Q-value corresponds to the long-term expected return
when action at is taken in state st, and then the policy π is
followed henceforth. Mathematically,

Qπ(st,at)
.
= Eri>t, si>t∼E, ai>t∼π

[
Rt | st, at

]
(4)
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The state-action value function can be expressed as Bellman
equation, such as:

Qπ(st,at) =Eri>t, si>t∼E
[
r(st,at)+

γEat+1∼π
[
Qπ(st+1,at+1)

]] (5)

The optimal Q-function Q∗(st,at) gives the expected
total reward received by an agent that starts in s, picks
(possibly non-optimal) action at, and then behaves optimally
afterwards. Q∗(st,at) indicates how good it is for an agent
to pick action at while being in state st. Since V ∗(st) is
the maximum expected total reward starting from state st,
it will also be the maximum of Q∗(st,at) over all possible
actions at ∈ A

V ∗(st) = max
at∈A

Q∗(st,at) (6)

If the optimal Q-function is known, then the optimal action
a∗t can be extracted by choosing the action at that maxi-
mizes Q∗(st,at) for state st (i.e. the optimal policy π∗ is
retrieved),

a∗t = arg max
at∈A

Q∗(st,at) (7)

without requiring the knowledge of the environment dynam-
ics.

B. Tabular Methods and Approximated Solutions

In a model-free framework, the Q-function can be learned
directly from the interaction with the environment, by means
of the reward collected over time. Within this context two
different approaches can be considered: tabular methods and
ADP [12], [21]. The former store the Q-function as a table
whose entrance are the states and the actions, while the
latter uses parameterized Q-function using Value Function
Approximation (VFA). The main advantage of ADP relies
in its ability of solving the so-called curse of dimensionality,
which is a negative feature of both DP and reinforcement
learning strategies based on tabular methods [22]. In partic-
ular, the curse of dimensionality consists on the exponential
rise in the time and space required to compute a solution to
an MDP problem as the dimension (i.e. the number of state
and control variables) increase [23]. Due to such issue the
use of both DP and tabular methods is limited to the context
of small and discrete action and state spaces.

Let consider the following approximation

Qπ(st,at) ≈ Q(st,at|θQ
π

) (8)

The idea used by ADP methods to solve the curse of
dimensionality is to seek for the optimal parameters vector
θQ

?

instead directly for the Q-function Q?(st,at), thus
reducing significantly the size of the optimization problem.
Several function approximators can be employed, e.g. linear
approximators, neural networks, kernel-based functions. One
of the most famous example of ADP using deep neural
networks as VFAs is given in [13], where the deep Q-
learning algorithm is proposed.

ACTOR

CRITIC

SYSTEM
(Environment)Action, 

𝑎! State, 𝑠!

Reward, 𝑟!

Figure 2: Actor-Critic Structure.

C. Actor-Critic

In RL, the action is taken by a policy to maximize the
total accumulated reward. By following a given policy and
processing the rewards, one should estimate the expected
return given states from a value function. In the actor-critic
approach, the actor improves the policy based on the value
function that is estimated by the critic as depicted in Fig. 2.
We specifically focus on the policy gradient-based actor-
critic algorithm in this work, and, in particular, on the deep
deterministic policy gradient (DDPG) [19]. This algorithm is
an extension of deep Q-network (DQN) [13] to continuous
actions, maintaining the importance of features such as:
(i) random sampling from replay buffer where tuples are
saved, (ii) the presence of target networks for stabilizing the
learning process. The algorithm begins with a parameterized
critic network, Q(st,at|θQ), and actor network, π(st|θπ).

1) Critic: The role of the critic is to evaluate the current
policy prescribed by the actor. Action is taken from the actor
network with exploration noise, namely

at = π(st|θπ) +Nt (9)

where π(st) is a neural network, and Nt is exploration
noise. After applying an action, we observe reward rt+1

and next state st+1. The tuple (st,at, rt+1, st+1) is stored
in the replay buffer. We sample a random mini-batch of N
transitions from the buffer and for i = 1, · · · , N we set

yi = ri+1 + γQ′(si+1, π
′(si+1|θπ

′
)|θQ

′
) (10)

where superscript ′ denotes the target network, whose pa-
rameters are slowly updated in order to track and filter the
ones of the actual network thus reducing the chattering due
to the learning process and enhancing its convergence. The
critic network is updated to minimize the loss, L:

L =
1

N

∑
i

(
yi −Q(si, ai|θQ)

)2
(11)

θQk+1 = θQk + ηQ∇θQL (12)

where index-k denotes the gradient descent algorithm iter-
ates, and ηQ denotes the learning rates of the critic network.

2) Actor: The parameters of the actor network are up-
dated in order to maximize the long-term expected reward
J (θπ) = V π(st) over episodes

θπk+1 = θπk − ηπ∇θπJ (13)

where index-k denotes the gradient descent algorithm iter-
ates, and ηπ denotes the learning rates of the actor network.
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Notice that according to the proof in [24], the policy gradient
in (13) can be expressed as

∇θπJ ≈ Est∼E
[
∇aQ(s,a|θQ)|st, π(st)∇θππ(s|θπ)|st

]
(14)

which is then approximated by samples as follows

∇θπJ ≈
1

N

∑
i

∇aQ(s,a|θQ)|si, π(si)∇θππ(s|θπ)|si

(15)

Once the parameters of critic and actor network given
samples are updated, then the target network is also updated
as follows:

θQ
′
← τθQ + (1− τ)θQ

′

θπ
′
← τθπ + (1− τ)θπ

′
(16)

where τ is the level of “soft-update”. Equation (16) improves
the stability of the learning procedure. Note that convergence
is no longer guaranteed, in general, when a value function
approximator is used. Since the convergence of the critic
network is not guaranteed, it is important to note that these
target networks should update slowly to avoid divergence.
Thus, one should choose a small value of τ . This is a
challenging point when the action space becomes continuous
unlike tabular Q-learning.

III. BATTERY CHARGING PROBLEM

In this section, we briefly discuss the battery models and
control problem formulation used for the RL framework.
We consider reduced order of electrochemical model that
contains a large number of states, but achieves high-accuracy
and represents physical details of battery dynamics. We also
introduce the battery charging control problem formulation
in this section.

A. Electrochemical Model
The Single Particle Model with Electrolyte and Ther-

mal Dynamics (SPMeT) is derived from the Doyle-Fuller-
Newman (DFN) electrochemical battery model. The DFN
model employs a continuum of particles in both the anode
and cathode of the cell. The SPMeT uses a simplified
representation of solid phase diffusion that employs a single
spherical particle in each electrode. The governing equations
for SPMeT include linear and quasiliniar partial differential
equations (PDEs) and a strongly nonlinear voltage output
equation, given by:

∂c±s
∂t

(r, t) =
1

r2
∂

∂r

[
D±s r

2 ∂c
±
s

∂r
(r, t)

]
, (17)

εje
∂cje
∂t

(x, t) =
∂

∂x

[
Deff
e (cje)

∂cje
∂x

(x, t) +
1− t0c
F

ije(x, t)

]
,

(18)

where t ∈ R+ represents time. The state variables are
lithium concentration in the active particles of both elec-
trode denoted by c±s (r, t) and lithium concentration in the
elctrolyte denoted by ce(x, t). D±s and Deff

e (·) are diffusion
coefficients for solid phase and liquid phase dynamics.
Note that superscript j denotes anode, seperator and cath-
ode, j ∈ {+, sep,−}. Input current I(t) is applied to

the boundary conditions of governing PDEs. The terminal
voltage output is governed by a combination of electric
overpotential, electrode thermodyanmics, and Butler-Volmer
kinetics, yielding:

VT(t) =
RTcell(t)

αF
sinh−1

(
−I(t)

2a+AL+ī+0 (t)

)
− RTcell(t)

αF
sinh−1

(
I(t)

2a−AL−ī−0 (t)

)
+ U+

(
c+ss(t)

)
− U−

(
c−ss(t)

)
−
(

R+
f

a+AL+
+

R−f
a−AL−

)
I(t)

−
(
L+ + 2Lsep + L−

2Aκ̄eff

)
I(t)

+ kconc(t)[ln(ce(0
+, t))− ln(ce(0

−, t))],

(19)

where css is the solid phase surface concentration, namely
c±ss(x, t) = c±s (x,R±s , t), U± is the open-circuit potential,
and c±s,max is the maximum possible concentration in the
solid phase. The nonlinear temperature dynamics are mod-
eled with a simple heat transfer equation given by:

dTcell

dt
(t) =

Q̇(t)

mcp;th
− Tcell(t)− T∞

mcp,thRth
(20)

where Tcell represents cell temperature, T∞ is the ambient
temperature, m is the mass of the cell, cp,th is the ther-
mal specific heat capacity of the cell, Rth is the thermal
resistance of the cell, and Q̇(t) is the heat added from the
charging, which is governed by

Q̇(t) = I(t)((U+(SOCp)− U−(SOCn))− VT(t)) (21)

with the convention that a negative current is charging
current, and V (t) is the voltage determined by (19). Both
nonlinear open circuit potential functions in (21) are func-
tions of the bulk SOC in the anode and cathode, respectively.
This heat generation term makes the temperature dynamics
nonlinear. In this work, we focus on the SOC in anode
expressed as a normalized volume sum along the radial axis:

SOCn =
3

c−s,max(R−s )3

∫ R−s

0

r2c−s (r, t)dr. (22)

For more details on the SPMeT equations, boundary condi-
tions, and notations refer to [20], [25].

B. Minimum time charging problem
The minimum time charging problem is formulated as:

min
I(t)

tf (23)

subject to
battery dynamics in (17)-(22)
VT (t0) = V0, Tcell(t0) = T0

SOCn(tf ) = SOCn,ref, I(t) ∈
[
Imin, Imax]

VT (t) ≤ V max
T , Tcell(t) ≤ Tmax

cell

where t0 = 0 and tf are the initial and final time of
the charging procedure, V0 and T0 are the initial value
for voltage and temperature respectively, SOCref is the
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reference SOC at which the charging is considered complete.
Moreover, [Imin, Imax] is the bound interval for the current
while V max

T and Tmax
cell , are the upper bounds for voltage and

temperature. This is a free-time problem, whose objective
is to solve the battery charging problem in minimum time
given a battery model and operating constraints. Several
publications use this formulation, including [1], [3], [20].
This fast charging problem can be expanded in other forms
by modifying the cost function in (23) as maximize the
charge throughput over specified time horizon. Work related
to this formulation includes [5], [6]. On the other hand,
authors in [7], [8], [26] consider SOC reference tracking
problem where the cost function (23) is defined as squared
difference between the current SOC at time step t and the
reference SOC. These formulations fall within the class of
state reference tracking problems.

IV. SIMULATION RESULTS

In this section, we conduct a case study on how the RL
framework can be applied to the battery charging problem in
simulation. Our goal is to obtain a charging control policy
that charges the battery from 0.3 SOC to 0.8 SOC, while
the states and outputs do not violate the constraints. We
examine the performance of the actor-critic framework for
the minimum time charging problem using the electrochem-
ical model in Section III. When an electrochemical model is
considered, ADP methods become a sensible choice due to
the large number of states. We first assume that all the states
are available to the agent. Then, we drop this assumption and
consider the more realistic scenario in which only tempera-
ture and SOC can be measured/computed. Furthermore, we
are interested in seeing how actor-critic adapts its learning
behavior when the environment changes. This is especially
important in battery applications, where the optimal charging
trajectory will vary as the battery ages.

In this case study, we consider the minimum charging
problem for an electrochemical model, whose chemistry is
based on graphite anode/LiNiMnCoO2 (NMC) cathode cell.
The PDEs in (17)-(18) are spatially discretized by finite
difference. Then, state-space representation is formed with
these discretized states and thermal state (20) , which results
in a relatively large-scale dynamical systems, 61 states. The
actor-critic networks are based on neural network architec-
tures [19] with different numbers of neurons. Specifically,
the actor network uses two hidden layers with 20 - 20
neurons. The critic network uses two hidden layers with 100
- 75 neurons. Hyper parameters are detailed in Table I.

Variable Description Value
γ Discount factor 0.99

ηπ , ηQ Learning rate of actor, critic 10−4, 10−3

τ Soft update of target networks 10−3

Table I: Actor-critic hyper parameters.

The reward function is designed with the aim of both
achieving fast charging and guaranteeing safety, according
to the optimization problem in (23)

rt+1 = rfast + rsafety(st,at) (24)

where rfast = −0.1 is a negative penalty for each time
step which passes before the reference SOC is achieved.

In addition, a negative penalty is also introduce at each time
step in which the voltage and temperature constraints are
violated

rsafety(st,at) = rvolt(st,at) + rtemp(st,at) (25)

This is done in particular by means of linear penalty
functions [27]:

rvolt(st,at) =

{
−100(VT(t)− V max

T ), if VT(t) ≥ V max
T

0, otherwise
(26)

rtemp(st,at) =

{
−5(Tcell(t)− Tmax

cell ), if Tcell(t) ≥ Tmax
cell

0, otherwise
(27)

where constraints are set to V max
T = 4.2V , Tmax

cell = 47◦C
in this case study. The current is limited within the range
[0, 1.8C], where C is the C-rate related to the considered
cell. The current is applied by scaling and translating the
output of the actor network which, in the considered case,
is already limited in the range [−1, 1], due to the fact that
its last layer is an hyperbolic tangent operator, i.e., −1 ≤
tanh(·) ≤ 1.

A. Learning Constrained Charging Controls

The objective of this study is to: (i) validate the actor-
critic performance on the minimum time charging problem,
and (ii) compare the performance with full and reduced state
feedback for the actor-critic networks. The performance is
measured by the cumulative reward for each episode. In
training, the action is determined by following (9) with the
presence of exploration noise. In testing, we test the policy
without exploration noise so that we can see the performance
of the trained actor-critic network.

Figures 3a-b show the training/testing results of the
actor-critic approach. The performance of controller during
training converges to around -10 cumulative reward while
the performance of controller during testing converges to
around -5 cumulative reward. The difference comes from the
presence of exploration noise. We can clearly observe that
exploration is not needed after 1000 episodes as the action
network, π, falls into its local optimal. Furthermore, we
design two state-feedback controllers1. One utilizes the full
state vector (61 states) for feedback control. The other uses
a reduced or “simplified” state vector for feedback control,
with only SOC and temperature (2 states). The purpose of
reducing the state vector size is motivated from an intuition
that the objective function only involves anode bulk SOC
and state constraints. The training/testing results in Fig. 3a-
b show that both simplified-states and full-states achieve the
goal.

Figures 3c-d show how much constraints are vio-
lated during testing. The constraint violation scores are
calculated according to max {VT(t)− Vmax ∀t ∈ [0, tf ]},
max {Tcell(t)− Tmax

cell ∀t ∈ [0, tf ]} for each episode. The
constraint violation scores approach zero as the episodes
increase, which implies that the controller learns the con-
straints. Positive values imply the constraints are violated.

1Note the state vectors are inputs for both the actor and critic networks
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(d)

(a) (b)

(c)

(e)

Figure 3: Actor-critic constrained charging results for the SPMeT model with 95 % confidence interval. (a) training
performance, (b) testing performance, (c,d) constraint violation, (e) charging time

0 5 10 15 20 25 30 35

Time [min]

-2

-1.5

-1

-0.5

0

full-states

simplified-states

0 5 10 15 20 25 30 35

Time [min]

0

0.2

0.4

0.6

0.8

full-states

simplified-states

0 10 20 30

Time [min]

3.9

4

4.1

4.2

full-states

simplified-states

0 10 20 30

Time [min]

25

30

35

40

45

full-states

simplified-states

Figure 4: Validation of actor-critic algorithm after training
with VT(0) = 3.6V, Tcell(0) = 27◦C: (a) simplified-states
achieves -5.38 cumulative rewards; (b) full-states achieves
-4.69 cumulative rewards.

The constraints are violated in the beginning because pa-
rameters of actor-critic are randomly initialized. However,
they approach the boundary during learning, since the op-
timal solution is along the constraint boundary. Figure 3e
shows that the charging time decreases to about 45 minutes.
Figure 4 visualizes the action, states, and constraints for
the simplified-states and full-states actor-critic networks. We
find that both controllers achieve similar performance for

minimum time charging, around 40 minutes for the given
initial conditions. The derived feedback control policy ex-
hibits the constant current (CC), constant temperature (CT),
and constant voltage (CV) shape, which can be qualitatively
similar to the model-based control results in [1]–[3], [7],
[26]. The only difference is that we don’t require any
knowledge of model dynamics.

B. Learning Adaptive Constrained Charging Controls

In this section, we are interested in the adaptability of
the actor-critic approach, which is crucial to the battery
charging problem as the cell ages. To represent aging,
we perturb the electrochemical parameters, namely, film
resistance, R±f , heat generation, Q̇(t). Perturbation of those
parameters represents the battery degradation as they directly
affect to battery voltage (19) and thermal state (20), which
can be monitored by experimental measurement. We expect
that the previous actor-critic network could violate the state
constraints immediately.

Figures 5a-b display the adaptation results of the actor-
critic approach in training/testing. We start from the previous
actor-critic configuration in order to observe its adaptability.
We observe that both full-sates and simplified actor-critic
network are capable of adapting its policy to achieve the
goal. We take zoom-in the first 100 episodes to see how the
adaptation is processed for the episodes. We observe that
the full-states actor-critic network adapts much faster than
the simplified states. This is related to the large number
of parameters in the full-states network which can lead to
greater flexibility in adapting to the new environment.

Figures 5c-d describe the constraint violation scores. Due
to change of environment, we observe that the controllers
are prone to violate the constraints. Figure 5e shows that the
battery charging time increases compared to previous case
study because of state violations. The controller reduces the
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Figure 5: Actor-critic adaptive charging results for the SPMeT model with 95 % confidence interval. (a) training performance,
(b) testing performance, (c,d) constraint violation, (e) charging time
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Figure 6: The validation of adaptive actor-critic algorithm
after training at VT(0) = 3.6V, Tcell(0) = 27◦C: (a)
adapted simplified-states achieves -7.79 cumulative rewards
while original simplified-states achieves -81.78 due to state
violation; (b) adapted full-states achieves -8.19 cumulative
rewards while original full-states achieves -82.16 due to state
violation.

charging level thus increasing the required charging time
in order to reach the reference SOC (0.8) from 45 to 70
minutes.

Figure 6 shows the performance of adaptive controllers
at the end of training. The constraints are equivalent to the
previous validation, but the system dynamics has changed.

So, the original actor-critic network, which learns from a
fresh battery, immediately violates the constraints since the
environment has changed (aged). However, we are able
to construct adaptive controllers for both full-states and
simplified-states that achieve the goal without safety vio-
lations from previous actor-critic networks. The fluctuating
current for the full-states actor-critic network could be
mitigated by regularizing the actor-critic parameters during
learning.

V. CONCLUSION

In this paper, we have examined a reinforcement learn-
ing approach for the battery fast-charging problem in the
presence of safety constraints. In particular, we have shown
how RL can overcome many of the limitations of the
model-based methods. Among the RL paradigms, the actor-
critic paradigm, and specifically the DDPG algorithm, has
been adopted due to its ability to deal with continuous
state and action spaces. To address the state constraints,
the reward function has been designed such that the agent
learns constraint violation. The control strategy has been
tested in simulation on an electrochemical battery model
and the presented results are consistent with model-based
approaches. In addition, the performance of the actor-critic
strategy has been evaluated both in the case of full and
partial state feedback. Finally, the adaptability of the control
algorithm to battery ageing has been considered. Future
work involves adding different types of safety constraints,
related to electrochemical phenomena occurring inside the
battery, and experimental validation.
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