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Abstract— This paper explores tractable robust optimal con-
trol of nonlinear systems with large state spaces. Conventional
applications of surrogate modeling for control replace the
underlying dynamical model with a data-driven surrogate
function. For large-scale systems, this approach possesses a host
of shortcomings. We address these challenges by presenting a
novel robust surrogate optimization framework for finite-time
and receding horizon optimal control. Rather than modeling
the entire state transition function, we define a surrogate
model which maps the initial state and time series of control
inputs to an approximate objective function value. We also
define surrogate models which predict time series of relevant
constraint functions. Since the bulk of the relevant information
is encoded in the initial state, we apply a principal component
analysis to project the state onto a reduced basis, allowing
surrogate models with tractable parameterizations. To guaran-
tee constraint satisfaction, we use φ-divergence to formulate
distributionally robust chance constraints which are satisfied
for worst-case realizations of the test data modeling error
distribution. We validate our approach using a case study of
optimal lithium-ion battery fast charging using a large-scale
electrochemical battery model.

I. INTRODUCTION

This paper presents a novel algorithmic framework for dis-
tributionally robust surrogate optimal control of large-scale
dynamical systems. This work is motivated by Bellman’s
infamous “curse of dimensionality”, whereby the computa-
tional demands of solving an optimal control problem scale
exponentially with the cardinality of the state space of the
underlying dynamical system.

In conventional control applications, data-driven surrogate
models are often applied to solve nonlinear optimal control
problems. These surrogates are typically implemented as re-
placements or supplements for the underlying state transition
models. While this approach presents a host of advantages, it
also presents challenges when applied for large-scale dynam-
ical systems. First, modeling state transitions for a dynamical
system with hundreds or thousands of state variables can re-
quire a surrogate model with an intractable parameterization.
Work by Srivastava et al. explores the limitations induced
by this shortcoming using data-driven Kriging models [1].
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Furthermore, modeling every state transition is often unnec-
essary and adds significant modeling complexity for limited
advantage. This point has been demonstrated in applications
of surrogate optimization models, where design variables are
mapped directly to an approximate objective function. Mod-
eling errors can also accumulate as the control horizon grows,
leading to compounding error and modeling drift that can de-
grade performance [2]. Thus, for large scale optimal control
problems, other methods are frequently pursued. These can
include pseudospectral optimal control, control vector param-
eterization, and approximate dynamic programming (ADP).
Each of these methods likewise possess their own unique
advantages and shortcomings. For instance, pseudospectral
optimal control can require expensive software packages
and significant tuning [3]. Control vector parameterization
has proven to be a useful tool for large-scale optimal
control [4]. However, the inherent approximation implied by
simplifying and reducing the control input frequently leads
to sub-optimal results. Approximate dynamic programming
yields provably optimal results for simple formulations, i.e.
linear quadratic problems [5]. However, non-convex optimal
control problems can require significant tuning in order to
yield useful results. Likewise, control of large-scale systems
using ADP can lead to function approximators characterized
by computationally intractable parameterizations.

For conventional design optimization problems, surrogate
modeling approaches are frequently adopted to map design
variables directly to an approximate objective function value.
This line of research is particularly popular in the aerospace
engineering literature, as aerospace design problems often
involve high fidelity and computationally expensive physics-
based simulations [6], [7]. This type of approach, despite
its utility, fails to completely avoid the underlying curse of
dimensionality. Given enough decision variables, the param-
eterization of the surrogate model can still become untenable
for training. With no feasible way to reduce the cardinality of
the decision variables, this tool is still only applicable under
certain contexts and conditions.

The corollary between this approach and finite-time op-
timal control would be developing surrogate models which
neglect the state transition dynamics entirely. That is, these
surrogate models map the initial state and discrete control
input sequence directly to an approximate objective function
value. However, a significant and unrecognized distinction
exists for surrogate optimization models between the ap-
plications of control and general design optimization. For
control, the bulk of the information is encoded in the initial
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state. Consequently, we can use dimensionality reduction
techniques like principal component analysis to project the
initial state into a reduced basis. This allows us to formulate
surrogate optimization models which possess tractable pa-
rameterizations, even for particularly large scale dynamical
systems. Limited work exists on this approach within the
context of control. Peitz et al. provide some brief discussion
of surrogate optimal control methods which neglect state
transitions, however this discussion is not the focus of
their review of multiobjective model-predictive control [8].
Research by Marzat et al. does show some effective nonlinear
MPC results using a Kriging surrogate model that neglects
state transition dynamics [9]. However, [9] is fundamentally
designed and validated for systems with few state variables.
Perhaps most importantly, a comprehensive analysis on con-
straint feasibility is missing from this literature.

We address these open challenges by presenting a novel
distributionally robust surrogate optimal control algorithm.
First, we define feed-forward neural network surrogate mod-
els which map a reduced representation of the initial state
and a finite time series of control inputs to an approximate
objective function value. A classic approach to enforcing
constraints is adding penalty functions to the objective, which
can require extensive tuning. Instead, we develop surrogate
models which predict time series of the constraint functions
based on the same reduced input data. For optimal control
problems with a short time horizon, we can obtain approx-
imate solutions by optimizing the model once. However,
for optimal control problems on a longer time horizon, we
apply these surrogate models within a robust framework.
Namely, we reformulate relevant safety constraints as chance
constraints which encode statistical distributions of modeling
error. To further bolster the robustness of our approach,
we apply φ-divergence to optimize over the worst case
realization of modeling error, within a ball in the space
of probability distributions centered around our empirical
distribution. Then, the optimal control solution is applied
to the plant (i.e., the original full-order model) in the loop
to transition into the next state, where we repeat this opti-
mization process until reaching a desired terminal condition.
Furthermore, by absorbing the state transition dynamics into
the surrogate models, we enable an intuitive application of
PCA while also eliminating modeling drift throughout the
finite-time optimal control problem.

To validate our approach for a large scale nonlinear
dynamical system, we solve the optimal safe-fast charging
problem for a lithium-ion battery. Safe lithium-ion battery
fast charging is an important application of optimal control,
as batteries and charging infrastructure become more pow-
erful. In this paper, we use an electrochemical model known
as the single particle model with electrolyte and thermal
dynamics (SPMeT). Electrochemical battery models provide
more granular information on the state of the battery cell
compared to more simple equivalent circuit battery models.
This additional information allows us to confidently operate
batteries at their safe limits and improve charging times.
The cost, however, of using electrochemical models is that

they are classic high-dimensional systems characterized by
hundreds or even thousands of state variables. This renders
optimal control with electrochemisty models a challenge.
Some work exists on electrochemical battery model con-
trol. Perez et al. apply the Legendre-Gauss-Radau (LGR)
pseudo-spectral method with adaptive multi-mesh-interval
collocation to solve the optimal fast charging problem using
the SPMeT model with a lithium-iron phosphate (LFP)
parameterization [3]. Research by Moura et al. and Perez
et al. both apply a modified reference governor (MRG) for
the fast-charging application. While these results yield a high
degree of fast charging performance and safety, optimality is
not guaranteed [10], [11]. We demonstrate that our approach
yields results similar to those given by [3], [10], but utilizing
a more systematic methodology.

II. PROBLEM FORMULATION

A. Finite-Time Optimal Control Problem Statement

Consider the following nonlinear optimal control problem
in discrete time:

min

N∑
k=0

Jk(x(k), u(k)) (1)

subject to: x(k + 1) = f(x(k), u(k)) (2)
g(x(k), u(k)) ≤ 0 (3)
h(x(k), u(k)) = 0 (4)
x0 = x(0) (5)

where k is the time index of the problem and N is the final
time; x(k) ∈ Rn is the vector of states at time k; u(k) ∈ Rp
is the vector of inputs at time k; Jk(x(k), u(k)) : Rn×Rp →
R is the instantaneous cost at time k as a function of the
states and inputs; f(x(k), u(k)) : Rn×Rp → Rn represents
the linear or nonlinear system dynamics; g(x(k), u(k)) :
Rn × Rp → Rm represents linear or nonlinear inequality
constraints on the states and inputs; and h(x(k), u(k)) : Rn×
Rp → R` represents linear or nonlinear equality constraints
on the states or inputs. We are especially interested in cases
where the dimension of x is high, i.e. n > 102, 103, or more,
as this confronts us with Bellman’s curse of dimensionality.

B. Surrogate Modeling Approach

Conventional applications of surrogate modeling within
the controls literature frequently entail replacing the un-
derlying dynamics with a learned surrogate. For large-scale
nonlinear dynamical systems, this approach possesses several
challenges which we discussed in our introductory section.

This paper adopts a different approach which addresses
many of these challenges. First, we replace (1)-(5) with the
following optimal control problem statement:

min F(x0, U) (6)
subject to: max(Gi(x0, U)) ≤ 0 ∀ i = 1, · · · ,m (7)

Here, the surrogate function F maps the initial state x0 and
time series of control inputs U = [u(0), · · · , u(N)] directly
to an approximation of the objective function given in (1).
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In set notation F(·, ·) : Rn × Rp×(N+1) → R. Likewise,
the surrogate constraint functions Gi : Rn × Rp×(N+1) →
R(N+1) take the same inputs and outputs a time series of the
relevant constraint function value for each of i = 1, ...,m
inequality constraints. Since the output of Gi is a time
series of g(x(k), u(k)), we can simply optimize subject to
the maximum element in this time series. With a simple
modification, we reformulate (7) into distributionally robust
chance constraints which probabilistically guarantee safety
with respect to modeling errors. We discuss this approach in
the following section of this paper.

For a model predictive control application, the optimal
control problem in (6)-(7) becomes:

min F(xk, Uk:k+N ) (8)
subject to: max(Gi(xk, Uk:k+N )) ≤ 0 ∀ i = 1, · · · ,m

(9)

At k = 0, the initial state becomes the current state, and
the control input time series Uk:k+N = [u(k), · · · , u(k +
N)] starts at the current state and evolves over a horizon
of N time steps into the future. After solving this reduced
optimization program, we apply the first control input to the
plant model in the loop, simulating one step forward and
then repeating the overall process.

Typically, training data for surrogate optimization models
is generated via a host of methods. For instance, one popular
method in the literature is Latin hypercube sampling (LHS)
[7]. For dynamical systems, we can generate suitable training
and testing data via random sampling from the state space,
and then simulate with random control input trajectories.
Overall, the design of experiments can take many forms
and is open for further investigation. For unstable dynamical
systems, we can randomly generate a set of initial states
and simulate the state evolution with random control in-
put sequences over a finite horizon. Compared to episodic
simulations over a long time horizon, this approach will
help avoid the states diverging, allowing us to obtain useful
training data for our surrogate models.

C. State Space Reduction via Principal Component Analysis

For particularly large scale dynamical systems, we can
reduce the dimensionality of the initial states using principal
component analysis (PCA). Namely, consider the arguments
of F and Gi, (x0, U) ∈ Rn × Rp×(N+1). We are interested
in n > 102, 103 whereas p(N + 1) ∼ 101.

Suppose we have M training data samples for the state
x, represented as matrix X ∈ Rn×M . Consider a so-called
“principal component” which can be expressed as:

V = wTX (10)

where w ∈ Rn×1 is a vector of weights, V ∈ R1×M is an
arbitrary principal component. If we consider X as a random
matrix, then we seek to choose w to maximize the variance
of V

var(V ) = wTXXTw (11)

We then formulate the following optimization problem while
constraining w to have unit length:

max
w

wTXXTw (12)

subject to wTw = 1 (13)

which yields the first principal component. This method
can be extended to compute multiple principal components,
and project the original data onto a reduced basis that
maximizes variance [12], thus reducing x0 ∈ Rn to a vector
of dimension q, where q << n.

III. ROBUST CHANCE CONSTRAINED OPTIMIZATION

A. Surrogate Control with Chance Constraints

A fundamental weakness of the surrogate optimal control
approximation in (6)-(7) is the accuracy of functions F and
Gi. In particular, the surrogate modeling error of Gi must
be handled with care to ensure solution feasibility. Through
some simple statistical analysis, we can rigorously represent
feasibility with respect to the original constraints (3) even
in the presence of modeling errors. Consider the following
surrogate modeling error, or residual, obtained from the test
data set used to train Gi:

r
(j)
i = g

(j)
i (x(k), u(k))− ĝ(j)

i (x(k), u(k)), ∀ k,∀ j (14)

where g(j)
i is the true constraint function value from the test

data, indexed by j = 1, ..,M individual data points, and
ĝ

(j)
i is the estimate of this constraint function we obtain

from surrogate model Gi. Since our training data (x0, U)

is randomly generated, we can consider residual r(j)
i as

samples of a random variable denoted by Ri. For each
constraint function Gi, we compute an empirical cumulative
distribution function P̂ for the residuals by treating r

(j)
i as

samples of random variable Ri. We estimate the CDF of
Ri empirically from the testing data. Now, rewriting the
constraint gi(x(k), u(k)) ≤ 0 gives us:

gi(x(k), u(k)) ≤ 0, ∀ k (15)
ĝi(x(k), u(k)) +Ri ≤ 0, ∀, k, ∀ Ri (16)
max{Gi(x(k), Uk:k+N )}+Ri ≤ 0, ∀ Ri (17)

Since Ri is a random variable with potentially unbouded
support, we relax this into a chance constraint:

Prob{max{Gi(x(k), Uk:k+N )}+Ri ≤ 0} ≥ 1− ηi (18)

where ηi is our risk metric, or the allowable risk in violating
the chance constraint. This formulation begs the question:
“Why don’t we offset the constraint by the maximum residual
value?” This would be equivalent to satisfying (16) with
respect to the worst case value of Ri, or that η = 0.
This approach often creates unnecessary conservatism or
even an empty feasible set, since the worst case residual
is always considered. A practical compromise is chance
constraints, which ensures safety for up to the (1 − ηi)
quantile of the probability distribution, so rare extreme cases
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do not unnecessarily compromise performance. We further
manipulate (18) using the inverse CDF as follows

Prob {Ri ≤ −max{Gi(x(k), Uk:k+N )}} ≥ 1− ηi (19)

P̂Ri (−max{Gi(x(k), Uk:k+N )}) ≥ 1− ηi (20)

−max{Gi(x(k), Uk:k+N )} ≥ P̂−1
Ri

(1− ηi)
(21)

Importantly, notice that the true distribution for Ri in (19) is
approximated by the empirical distribution P̂Ri in (20), since
our only knowledge of the surrogate model approximation
error is via test data set residuals. Now, the formulation in
(8)-(9) is robustified to:

min F(xk, Uk:k+N ) (22)
subject to:

max{Gi(xk, Uk:k+N )}+ P̂−1
ri (1− ηi) ≤ 0, ∀ i = 1, ...,m

(23)

The inverted CDF P̂−1
ri (1− ηi) takes the form of a constant

which adds conservatism with respect to the constraint
boundary, which yields an elegant and systematic “safety
factor”. This conservatism is directly based on empirical data
from training and testing the surrogate model Gi. As the
surrogate models become more accurate, corresponding to
the density function of Ri becoming sharper around zero,
then P̂−1

ri (1 − ηi) → 0. This is to say that as our models
become more accurate, the robust inequality constraint in
(23) tightens. This chance constraint approach allows us to
guarantee safe control in a probabilistic sense with surrogate
models. In the next section, we discuss a data-driven distribu-
tionally robust chance constraint (DCC) formulation which
improves our guarantee of safety, given limited training and
testing data to construct empirical distribution P̂Ri .

B. Data-Driven Distributionally Robust Chance Constraints

The chance constraints provide probabilistic guarantees on
feasibility. However, they are based on empirical distributions
of surrogate model residuals. In reality, the true distribution
of residuals is unknown. To accommodate this distributional,
we reformulate the constraint in (20):

inf
P∈D

P{max{Gi(x(k), Uk)}+Ri ≤ 0} ≥ 1− ηi (24)

where D is a confidence set of potential probability distribu-
tions centered around our empirical distribution. Typically D
can be constructed based on a priori information. However,
in this application the true distribution is unknown.

Since there exists uncertainty in the quality of our empiri-
cal distribution P̂Ri , we can characterize the confidence set D
using a distance measure between probability distributions.
Borel’s law of large numbers suggests that as the amount
of data tends towards infinity, the distance between the
empirical distribution and the true distribution D → 0. In
this paper, we adopt the φ-divergence metric to model the
distance between the empirical distribution of residuals and
the true distribution of residuals.

1) Quantifying Uncertainty with φ-Divergence: We adopt
a data-driven distributionally robust chance constraint formu-
lation from [13] to obtain an equivalent reformulation of (24).
First, we define φ-divergence Dφ as:

Dφ(f∗||f̂) =

∫
Ω

φ

(
f∗(ri)

f̂(ri)

)
f̂(Ri)dRi (25)

Here, f∗ is the true, unknown probability distribution func-
tion (pdf), and f̂ is the known empirical pdf of residuals,
corresponding to probability distributions P∗ and P̂.

Several varying definitions of the function φ exist in
the literature, each lending itself for different applications
and statistical properties. In all cases, φ must be a convex
function and φ(1) = 0. In this paper, we adopt the Kullbach-
Leibler (KL) φ-divergence or relative entropy to represent
proximity in the probability space. The definition of this
function is:

φKL(x) = x log(x)− x+ 1 (26)

We do not know the true probability distribution P∗, but
using φ-divergence we can assume the true distribution lies
within some range d ∈ R of our empirical distribution,
where d is a distance-like hyperparameter. Based on this
assumption, we define a confidence set as follows:

Dφ = {P∗ ∈ P : Dφ(f∗||f̂) ≤ d, f =
dP∗

dRi
} (27)

In this representation, P is the set of all feasible probability
distributions. Using this confidence set, we can robustify the
expression given by (24) as:

inf
Dφ(P∗||P̂)≤d

P{max{Gi(x(k), Uk)}+ ri ≤ 0} ≥ 1−ηi (28)

Consider the worst-case scenario, where the true probability
distribution is a distance d from our empirical distribution.
Our chance constraint (18) can be represented as

Prob{max{Gi(x(k), Uk)}+ ri ≤ 0} ≥ 1− ηKL;i (29)

Here, ηKL;i is a perturbed risk criterion defined by the
following relationship:

ηKL;i = 1− inf
x∈(0,1)

{
e−dx1−ηi − 1

x− 1

}
(30)

This equivalent reformulation is introduced in work by Jiang
et al. [13]. By introducing the φ-divergence distance-like
hyperparameter d, we further pull-in our risk metric to
allow additional conservatism based on our confidence in the
empirical residuals distribution. In this case, we can solve for
ηKL;i offline using a simple convex optimization program.

This formulation provides a disciplined method for ad-
dressing surrogate modeling error, given a distance-like hy-
perparameter d. Theoretically, as the number of testing data
samples mtest → ∞, d → 0. This is to say that, as the
amount of data comprising our empirical distribution tends
towards infinity, our empirical distribution will approach the
true distribution (P̂→ P∗). Past work has explored mapping
mtest to d with varying approaches that are typically unique
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to the underlying case study. In future work, we plan on
exploring this relationship for a robust surrogate optimal
control methodology that does not require a user-selected
hyperparameter d.

IV. OPTIMAL SAFE FAST CHARGING OF A LITHIUM-ION
BATTERY USING AN ELECTROCHEMICAL MODEL

Next we demonstrate the efficacy of our surrogate opti-
mal control approach using an electrochemical lithium-ion
battery model, which is a large-scale dynamical system.
The fast charging problem has become progressively more
important with the proliferation of electrified transport and
intermittent renewable power generators. Furthermore, since
fast charging applications take batteries to more extreme op-
erating conditions, it is imperative that the model we use for
control purposes provides sufficiently detailed information
to ensure safety during demanding circumstances. Reduced-
order battery models exist, however the lack of granular
electrochemical information afforded by such models leads
to control policies which are overly conservative or unsafe.
These policies (i.e. constant current-constant voltage, or
CCCV) therefore provide lower performance in fast charging
scenarios. With detailed knowledge of the cell’s electrochem-
ical state, we can improve performance and safety simulta-
neously. However, the key challenge is that electrochemical
models typically contain ∼ 102 or ∼ 103 states.

Lithium-ion battery model fidelity varies significantly.
Equivalent circuit models (ECM) are perhaps the simplest
class of models. However, while their simplicity enables a
diversity of control algorithms, they often fail to adequately
represent battery cell dynamics during rapid charging charg-
ing conditions. For demanding fast charging applications, our
modeling objective must include precise predictions of the
electrochemical states within the lithium-ion cell. The state
information is immensely important when charging at high
current, given that the safety and degradation of lithium-ion
battery cells depends most strongly on electrochemistry. For
fast charging applications, electrochemical models are more
suitable, and several versions exist in the literature. In this
paper, we conduct optimal control using the single particle
model with electrolyte and thermal dynamics (SPMeT). Past
work by Perez et al. solves a similar optimal control problem
for SPMeT parameterized for a lithium iron phosphate (LFP)
cell using pseudospectral optimal control [3]. One challenge
with pseudospectral methods is that tuning the initial input
trajectory and mesh size is highly non-trivial. Moreover, it’s
computational complexity prevents real-time applications.
This paper uses the results of [3] as one benchmark for our
surrogate optimal charging cycle results.

A. Single Particle Model with Electrolyte &
Thermal Dynamics

The SPMeT model is derived from the Doyle-Fuller-
Newman (DFN) electrochemical battery model. The DFN
model employs a continuum of particles in both the anode
and cathode of the cell. The SPMeT uses a simplified
representation of solid phase diffusion that employs a single

spherical particle in each electrode. The governing equations
for SPMeT include linear and quasiliniar partial differential
equations and a strongly nonlinear voltage output equation,
given by:

∂c±s
∂t

(r, t) =
1

r2

∂

∂r

[
D±s r

2 ∂c
±
s

∂r
(r, t)

]
, (31)

εje
∂cje
∂t

(x, t) =
∂

∂x

[
Deff
e (cje)

∂cje
∂x

(x, t) +
1− t0c
F

ije(x, t)

]
,

(32)

where t ∈ R+ represents time. Note that superscript j
denotes anode, seperator and cathode, j ∈ {+, sep,−}. The
terminal voltage output is governed by a combination of
electric overpotential, electrode thermodyanmics, and Butler-
Volmer kinetics, yielding:

V (t) =
RTcell(t)

αF
sinh−1

(
I(t)

2a+AL+ī+0 (t)

)
−RTcell(t)

αF
sinh−1

(
−I(t)

2a−AL−ī−0 (t)

)
+U+(c+ss(t))− U−(c−ss(t))

+

(
R+
f

a+AL+
+

R−f
a−AL−

+
Rce(Tavg(t))

A

)
I(t)

−
(
L+ + 2Lsep + L−

2Aκ̄eff

)
I(t)

+kconc(t)[ln(ce(0
+, t))− ln(ce(0

−, t))],

(33)

where css is the solid phase surface concentration, namely
c±ss(x, t) = c±s (x,R±s , t), U± is the open-circuit potential,
and c±s,max is the maximum possible concentration in the
solid phase. The exchange current density ij0 and solid-
electrolyte surface concentration cjss are computed as:

ij0(cjss) = kj
√
c0ec

j
ss(t)(c

j
s,max − cjss(t)), (34)

cjss(t) = cjs(R
j
s, t), j ∈ {+,−}. (35)

The quasilinearity in the electrolyte diffusion equation (32)
is rooted in the concentration dependence of the electrolyte
diffusion coefficient, Deff

e (cje).
The nonlinear temperature dynamics are modeled with a

single lumped thermal mass subjected to heat transfer:

dTcell
dt

(t) =
Q̇(t)

mCp;th
−
Tcell(t) − T∞
mCp;thRth

(36)

where T∞ is the ambient temperature, m is the mass of the
cell, Cp;th is the thermal specific heat capacity of the cell,
Rth is the thermal resistance of the cell, and Q̇(t) is the heat
added from the charging, which is governed by

Q̇(t) = I(t)((U+(SOCp)− U−(SOCn))− V (t)) (37)

Here, I(t) is the input current (the control input), and V (t) is
the voltage determined by (33). Both nonlinear open circuit
potential functions in (37) are functions of the bulk state
of charge (SOC) in the anode and cathode, respectively.
This heat generation term makes the temperature dynamics
nonlinear. For more details on the SPMeT equations and
notation, refer to [14].
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Fig. 1: Optimal charging results for the SPMeT model using a nickel-manganese-cobalt (NMC) cell parameterization. Here,
the maximum allowed C-Rate is 3C and the target SOC is 0.8. The initial SOC corresponds to equilibrium conditions at
3.25 Volts.

B. Optimal Control Problem Formulation

In this case study, our objective is to track a target battery
state-of-charge:

J =

∫ tF

t0

(SOCn(t)− SOCtarg)2dt (38)

where SOCn is the normalized bulk concentration in the
anode. We define the overall cell SOC as:

SOC(t) =
3
∫ R−

s

0
r2c−s (r, t)dr

(R−s )3c−s,max|x100% − x0%|
(39)

where |x100% − x0%| is the stoichiometric difference in the
anode. The constraints are:

θ±min ≤
c±s (r, t)

cs,max
≤ θ±max (40)

ce,min ≤ cle(x, t) ≤ ce,max, l ∈ −, sep,+ (41)

Tmin ≤ Tcell(t) ≤ Tmax (42)

In this case study, θ±min = 0.237, θ±max = 0.863, ce,min =
200 mol/m3, ce,max = 5000 mol/m3, Tmin = 20◦C, and
Tmax = 60◦C. The box constraints on the particle surface
concentrations, electrolyte concentrations, and cell temper-
atures are intended to maintain safe charging and prevent
rapid cell state-of-health degradation. In this case study,
we use individual chance constraints to accommodate these
safety requirements. Ideally, we would want to use a joint

chance constraint to satisfy all of these constraints with the
same probability. However, the inversion of a joint variable
CDF function is non-trivial and the subject of on-going
research. In future work, we plan on exploring the use of
joint chance constraints within our algorithmic architecture.
Additionally, we expect to address some minor modeling
and parameterization inconsistencies which arose when we
identified the parameters of the SPMeT using experimental
data. The use of a higher order model like the DFN could
potentially resolve this while also revealing new optimal
charging protocols.

The PDEs in (31)-(32) are spatially discretized such that
we obtain 206 state variables. To generate the training data,
we simulate 30 random episodes, each 22 minutes long with
random equilibrium initial conditions determined from the
equilibrium output voltage. This approach ensures we verify
the conservation of lithium principle of the battery model,
a property which makes sampling directly from the state
space difficult. Each surrogate model is a neural network
with 1 hidden layer with 10 neurons with sigmoid activation
functions. We reduce the cardinality of the state from 206 to
12 through principal component analysis on the training data,
as detailed in Section II-C. PCA reduces the dimensionality
of the state used as an input to the surrogate models. We
use the finite difference method to discretize the model and
conduct moving horizon control where ∆t = 1 second and
N = 4. Here, F approximates (38) for a finite, moving
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horizon. We construct 6 surrogate constraint models Gi,
i = 1, · · · , 6 for each relevant constraint given by (40)-
(42). Using the testing data from model training, we obtain
empirical modeling error probability distributions which we
use to formulate distributionally robust chance constraints.
For these constraints, η = 0.02, d = 0.001, and based on
a 80-20 training-testing data split ` = 7902. After obtaining
an open-loop control policy from our moving horizon control
strategy, we apply the first control input to the true SPMeT
model (the plant) in the loop, simulate forward one time step
and repeat the overall procedure until reaching SOCtarg.

C. Optimal Charging Results

Figure 1 shows our results for optimal safe fast charging
from an initial SOC of 0.056 to a final SOC of 0.8. In
this case, C-rate is a normalized input current rate such that
any cell discharged at a constant rate of 1C will be fully
discharged from an SOC of 1.0 in exactly 1 hour (assuming
no voltage limits or overpotentials). Figure 1 shows optimal
charging results with a 3C maximum allowed charging rate
for the SPMeT model parameterized for a nickel-manganese-
cobalt (NMC) prismatic lithium-ion battery cell. Here, our
benchmark is a constant-current constant-voltage (CCCV)
charging cycle. The CCCV charging protocol is the most
popular fast charging cycle used in industry. It is widely
adopted for its simplicity and strong performance. Given
CCCV is the industry standard fast charging cycle, it serves
as a useful benchmark for our optimal charging results.
The NMC cell in our simulations is nominally rated for a
maximum CCCV voltage of 4.2 Volts and maximum CCCV
current rate of 1C. Within the realm of simulation, we
can safely explore the relative performance using a more
aggressive 2C CCCV charging rate. We employ a simple
(1 + λ) evolutionary strategy (λ = 5000) in MATLAB to
generate the results shown in Figure 1, which required 15
minutes and 5 seconds of computation using a PC equipped
with a 9th generation Intel i5 processor with 6 cores. As a
result, this control scheme could potentially run in real-time
for an actual battery fast charging application.

Figure 1 demonstrates that the optimal charging trajectory
based on (38)-(42) follows a CC-Cce-CC-CT profile (con-
stant current, constant anode electrolyte, constant current,
constant temperature). This is consistent with prior results
obtained in [3], where the optimal solution rides the con-
straints, and the dominant constraint switches throughout
the charging cycle. Compared against the CCCV protocol,
there are several noteworthy findings. First, our protocol
outperforms the industry standard by charging the battery
cell approximately 15% faster than an aggressively tuned
CCCV cycle. Perhaps more importantly, by considering the
electrochemical states in the charging protocol we ensure in-
ternal states stay within a safe operating region. In constrast,
CCCV violates ce,min ≤ c−e (x, t). Thus, surrogate optimal
control will, in principal, extend the useful life of the battery
under demanding and aggressive fast charging protocols.

V. CONCLUSION

This paper presents a novel surrogate modeling approach
to optimal control of large scale dynamical systems. We
adopt existing ideas from the surrogate optimization and
robust optimization literature to develop a novel large-scale
optimal control approach. Then, by combining our approach
with PCA and distributionally robust optimization we obtain
fast surrogate optimal control for large scale systems that is
robust to surrogate model uncertainty.We apply our approach
to solve the optimal safe-fast charging problem for a lithium-
ion battery using the single particle model with electrolyte
and temperature dynamics, without reducing the state-space
(besides spatial discretization). The added information com-
municated by the complex electrochemical states allows us
to design safe fast charging protocols which exploit electro-
chemical information to improve overall performance relative
to CCCV, the industry standard fast charging protocol.
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